
3/
8/

20
18

 v
1.

0
©

 M
PS

I T
ec

hn
ol

og
ie

s G
m

bH
 (a

w
)

• This example highlights the vast capabilities of WhizniumDBE and WhizniumSBE co-
vering all aspects of modern IIoT software development from the lowest hardware
level to data collection in the cloud for big data analytics.

• A non-invasive current/voltage (I/V) probe on the power line of a portable beer coo-
ling box along with a standard FPGA board configured as an oscillicsope are used to
perform transient and steady-state analysis of the device‘s state.

• Together, the FabSight.Device WhizniumDBE and FabSight.BeerCooler WhizniumSBE
projects collect raw data on an ARM-based edge device running Linux, and perform
basic pattern recognition. The derived insights are stored in a local database and
are made available through an interactive web-based dashboard. To help during the
development stage, real-time interaction with a Windows/.NET machine learning
toolkit is implemented using the API capabilities of WhizniumSBE.

• FabSight.Analytics, the third Whiznium-developed tool in this context, serves as
cloud-based counterpart to FabSight.BeerCooler. Via its API, it accepts secure HTTPS
connections from potentially multiple FabSight edge devices, allowing them to syn-
chronize their historical data e.g. for big data analytics.

Quick facts

Introduction

Numerous challenges need to
be overcome to get many of
today‘s IIoT applications off
the ground, from non-inva-
siveness to the system under
investigation, to limited edge
device computing power and
low bandwidth of the data link
to connected cloud services.
The FabSight project as shown
in Figure 1 demonstrates how
each of these possible obst-
acles and bottlenecks can be
circumvented.
The project‘s overall mission
is to determine a target device
state only by measuring the
current and voltage on its po-
wer supply line, signals which
are readily available even for
legacy industrial appliances.
Detection of transients and
spikes requires sampling and
A/D conversion at up to 1MSPS
per line. The corresponding
data rate to the host embed-
ded system is greatly reduced
by performing functions such
as triggering, peak detection
and spectral decomposition

already on FPGA level. Whizni-
umDBE is used for the corre-
sponding FabSight.Device RTL
project Devsfcd, implementing
a device command set which
allows to parametrically adjust
the FPGA acquisition process
to each specific deployment.
The host system runs the
combined daemon FabSight.
BeerCooler / Sfbccmbd, a de-
dicated multi-threaded Linux
executable developed using
WhizniumSBE. It acquires e.g.
transient I/V time series or
spectra, and stores its various
features into a local SQLite
database as raw data. Owing to
the event-driven architecture
of the code, storing sets of raw
data triggers the execution of
various state detection algo-
rithms which write their re-
sults as time-stamped insights
into the same database. Fab-
Sight.BeerCooler communica-
tes to the outside world via a
web-based HMI and an API li-
brary, standard features in any
WhizniumSBE project.
Finally, FabSight.Analytics
/ Sfbacmbd is a cloud-ba-

Metric Value

modules
 ... of which controller
 ... of which LogiCORE
 ... of which memory

21
2
3
7

source files
 RTL project
 device access library

16
2

FPGA utilization
 LUT
 LUTRAM
 FF
 BRAM
 DSP
dev. access library size

5968
343
7188
8.5
16
500kB

Table 1: The FabSight.Device
DBE project in numbers

sed WhizniumSBE-developed
combined daemon which repli-
cates the data model of Fab-
Sight.BeerCooler, with only
slight adaptations such as
multi-source capability and
MySQL storage. The HTTPS
edge-to-cloud synchronizati-
on process between both tools
can be configured to perio-
dically push just enough raw
data or insights, so that mea-

Whiznium Code Generation/Iteration Services
Use Case: FabSight Monitoring Of Industrial Appliances

ningful big data analytics can
be performed.

Programmable logic

The commercial evaluation
board chosen (Digilent Basys3)
is built around a Xilinx Artix-7
series FPGA. This type of de-
vice features on-chip ADC‘s,
so that the only external cir-
cuitry required is for I/V level
translation and anti-alias fil-
tering.
Following the WhizniumDBE
development methodology,
the FPGA is subdivided into
controllers, functional enti-
ties serving specific purposes.
Only two controllers are needed
here, tkclksrc to provide ac-
curate time stamps based on a
10kHz clock and xadcacq, per-
forming the actual acquisition
task. Moreover, six read-on-

ly 2kB buffers based on FPGA
BlockRAM are defined to pro-
vide bulk data transfer of ac-
quired data to the host system.
To complete the basic device
definition and with that the
VHDL module hierarchy (be-
low xadcacq), further relevant
instantiations include Xilinx‘s
XADC and DFT LogiCORE‘s.
As part of the detailed device
description, a command set is
specified (see Figure 2) and
a number of finite state ma-
chines (FSM‘s) are included in

xadcacq, see Table 2 for their
purpose.
While FSM implementation is
a manual task, representing
the project-specific IP, Whiz-
niumDBE uses the model in-
formation provided to genera-
te all FPGA-side wiring. This
includes a UART, CRC secured,
host interface along with the
Devsfcd C++ device access li-
brary (“easy“ implementati-
on) for the host.

portable beer cooling box and current probe

Intel Atom

FabSight.BeerCooler
(Sfbc)

WhizniumSBE project

SQLite store, machine
learning state detection

UART-over-USB

Xilinx Artix-7

FabSight.Device (Sfcd)
WhizniumDBE project

buffered acquisition,
XADC and DFT

LogiCORE’s

…

multiple deployments

…

FabSight.Analytics (Sfba)
WhizniumSBE project

MySQL store, synchronization from
multiple devices

HTTPS

Figure 1: The individual FabSight hardware and software components of the project

Figure 2: Devsfcd command set (excerpt) as seen from host

start
stop

ref *
TblSfbcMPeriod

start
stop
srefSfbcKAcqfeat
Comment

ref *
refSfbcMPeriod

TblSfbcMData

start
stop
srefSfbcKAltfeat
Comment

ref *
refSfbcMPeriod

TblSfbcMInsight

refSfbcMFile
Val
Bindata

refSfbcMData
x1Start
x2SrefKKey
x3SrefSfbcKAcqtrig

ref *
TblSfbcAMDataPar

osrefKVal

refSfbcMInsight
x1Start
x2SrefKKey

ref *
TblSfbcAMInsightPar

1:N

1:N1:N

1:N

Data model

A versatile data model was
conceived which can be used
for any application that per-
forms analytics based on live
sensor data. Figure 3 shows
how raw data (TblSfbcMData),
filled in by acquisition jobs
(see below), is cleanly
separated from insights
(TblSfbcMInsight),
filled in by analytics
jobs. Actual informa-
tion, both single text/
numeric values or Ba-
se64-encoded binary
data can be stored along
with a µs-precision
time stamp underneath
raw data and insights,
respectively. Whizni-
umSBE uses the data
model to implement
SQLite and MySQL da-
tabase wrappers along with
a default web-based HMI for
data view and manipulation.

Sfbccmbd job hierarchy

As with all WhizniumSBE-de-
veloped projects, jobs respon-
sible for HMI features (named
Crd.../Pnl.../Dlg...) are gene-
rated automatically. All other
functionality is handled by
customly specified jobs which
appear both in the source code
tree and in the run-time job
hierarchy of Sfbccmbd. In this
project, those jobs are catego-
rized further into source jobs,
acquisition jobs and analytics
jobs. They are related as shown
in Figure 4. Most custom jobs

State machine Purpose

acq interface to XADC LogiCORE ; 2-channel read-out

lp low-pass filtered / long-duration average I/V value

spec interface to DFT LogiCORE ; write to spec{re/im}buf

spec{re/im}bufB burst read to host interface from spec{re/im}buf

trc trace recording to trc{i/v}{a/b}buf; continuous vs.
auto/manual triggers; peak detection

trcbuf trc{i/v}{a/b}buf “ping-pong“ buffer management

trc{i/v}bufB burst read to host interface from trc{i/v}{a/b}buf

Table 2: xadcacq controller FSM‘s along with their respective tasks

sources acquisition analytics

(rhs #includes lhs)

state detection
JobSfbcAltIvState (M/S)

JobSfbcAcqIv (M/S)
low-speed I/V monitoring

record I/V spectra
JobSfbcAcqIvSpec (M/S)

JobSfbcAcqIvTrans (M/S)
record I/V transients

JobSfbcAcqIvStream (M/S)
record I/V streams

FPGA hardware interface
JobSfbcSrcSfcd (M/S)

“low-speed clock“
JobSfbcSrcTrigger (M/S)

Figure 4: Dependencies between source, acquisition and analytics jobs

Figure 3: Data model (relevant tables)

use WhizniumSBE‘s master/
slave (M/S) feature, permit-
ting multiple run-time in-
stances of the same job with
only one being in charge.
JobSfbcSrcSfcd uses Devsfcd
to access the FPGA hardware.
Some low-level functions such

as time stamp read-out are
made available directly, and
others are adjusted only by
calibration information, per-
forming the translation from
raw ADC values to currents/
voltages. The job also offers
high-level functions such as
waiting for and retrieving
time-stamped I/V traces.
The trigger source job JobSfb-

cSrcTrigger uses the system
clock to initiate low-speed ac-
quisition tasks, such as JobS-
fbcAcqIv which retrieves and
stores a time-averaged I/V
pair on each trigger, typically
using a 1s interval.
The key job for obtaining I/V
“oscilloscope“ traces is JobS-
fbcAcqIvTrans. It can be used
to configure various triggers
(threshold values for levels
and step heights) along with
trace lengths and on-FPGA
FIR averaging. Once a trace
is obtained, statistical featu-
res (min/max/avg/var/...) are
extracted: this information in
many cases is sufficient for
state characterization.
JobSfbcAcqIvSpect receives
I/V spectra as real/imaginary
ADC raw values and transforms
them into calibrated amplitu-
de vs. frequency series. Again,
on-FPGA FIR averaging can be
configured.
Finally, JobSfbcAcqIvStre-
am allows recording seamless
long-duration traces. This
functionality is useful for the
training of machine learning
algorithms.
Currently a single analytics
job, JobSfbcAltIvState, gets
notified on arrival of new I/V
trace data (acquired by JobS-
fbcAcqIvTrans) and uses va-
rious indicators in both time
and frequency domains to de-
termine the machine‘s state.
JobSfbcSfbasync fulfills
a special role outside of the
source-acquisition-analytics
schema: it makes use of the
FabSight.Analytics API library
to match new data with al-
ready synchronized data, and
perform the required updates
remotely.

contact@mpsitechnologies.com
+49 175 918 5480

www.mpsitechnologies.com

Helene-Mayer-Ring 4, 04.19
80809 Munich

Germany

More information

• FabSight YouTube video, MPSI Technologies 2018.

Figure 5: JSON entry of insight values, template for API-based procedure

Metric Value

database tables
 ... of which model
 ... of which query

48
25
23

UI modules
UI cards

2
9

source files
 database
 combined engine
 web-based UI
 API

104
374
619
231

binary sizes
 database library
 combined engine
 API library

18.5 MB
36.9 MB
52.7 MB

Table 4: The FabSight.Analytics
SBE project in numbers

Metric Value

database tables
 ... of which model
 ... of which query

43
24
19

UI modules
UI cards

2
11

source files
 database
 combined engine
 web-based UI
 API

93
425
673
233

binary sizes
 database library
 combined engine
 API library

19.4 MB
48.5 MB
55.7 MB

Table 3: The FabSight.BeerCooler
SBE project in numbers

Live data display

Instant visual feedback of the
machine‘s I/V input and sta-
te are given in the form of a
web-based HMI, also included
in Figure 1. It combines stan-
dard WhizniumSBE features
with custom HTML/SVG gra-
phs.
Updates to the HMI views are
event-triggered by the acqui-
sition jobs described above.
Manual acquisition of traces,
spectra and long-duration
streams can be commanded
from within the UI as well.

Windows/.NET interaction

As part of the customer‘s
specifications, an external
Windows analytics tool was
required to get access to live
data. WhizniumSBE‘s accessor
app development feature was
used to generate the needed
.NET C++/CLI code.
WhizniumSBE‘s API philiso-
phy is that each HMI and M2M
interaction are equivalent in
terms of XML data exchanged.

This fact, along with the clean
separation between acquired
raw data on one hand and in-
sights on the other hand im-
ply a simple workflow for any
analytics task external to Sfb-
ccmbd:
1. log in / start a session, 2.
“observe“ the automatically
generated value panel on the
raw data card waiting for new
rows, 3. analyze that data and
4. write back derived insights
via the “add data“ dialog on
the insight card.
This last point is illustrated in
Figure 5, where JSON insight
values are added manualy, a
task performed by the .NET
accessor app through Sfbccm-
bd‘s API in the application di-
scussed here.

Cloud synchronization

Finally, raw data and insight
collection from possibly mul-
tiple embedded deployments
is one of the prerequisites for
big data analytics, which is
handled by copying informa-
tion from Sfbccmbd to an in-
stance of Sfbacmbd running in
the aws cloud.
In analogy to above .NET case,
the API workflow follows the
manual workflow with raw
data and insight value add dia-

logs, and Sfbccmbd #includes
the Sfbacmbd API library.
In remote or autonomous de-
ployment scenarios, the com-
minication channel can be
constrained by sporadic avai-
lability, data rate and cost for
bandwidth. This is particularly
the case if mobile, e.g. 4G/LTE
services are required.
For this reason, and as not all
raw data and insights are re-
quired for analytics, the syn-
chrnoization procedure can be
configured with detailed filte-
ring options and variable pe-
riodicity.

