
3/
1/

20
18

 v
2.

0
©

 M
PS

I T
ec

hn
ol

og
ie

s G
m

bH
 (a

w
)

•	 The example presented here shows how WhizniumSBE can be used to help developing
the control software for a complex embedded system.

•	 The system concerned is a multi-camera detector for indoor search and rescue (SAR)
operations within the framework of the European FP7 project ICARUS.

•	 Heavy use is made of WhizniumSBE‘s modeling capabilities to generate a daemon
which delivers images from multiple sources to multiple targets in non-blocking
fashion, e.g. for 3D reconstruction, visible/thermal image fusion and laser spot iden-
tification at the same time. The master/slave job feature is employed to avoid simul-
taneous commands from different sources, e.g. from the user interface and from an
automated search algorithm. To make the detector a functional part of the ICARUS
system of robots and other assets, the project‘s API is included in a number of ex-
ternal tools.

Quick facts

Introduction

Control software which smart-
ly combines sensor informa-
tion while offering conveni-
ent access from the outside
is required in order to make
best use of all ICARUS detector
hardware features which are
detailed in Figure 1. The main
sensing elements are two 1.2
megapixel visible light (VIS)
cameras and a long-wave in-
frared (LWIR) thermal imager

with VGA (640x480) resolu-
tion. Spot measurements at
a specific mid-wave infrared
(MWIR) wavelength are sup-
ported by means of a quantum
cascade detector (QCD) based
8x8 pixel array. Motorized ro-
tation around two axes and a
modulated red alignment la-
ser help aligning and loca-
ting its narrow field of vision.
Auxiliary functions include
two high-power LED‘s and
an accelerometer. A gumstix

Figure 1: The ICARUS multi-camera detector and its possible mounting posi-
tions on the project‘s small unmanned ground vehicle (SUGV)

Metric Value

database tables
 ... of which model
 ... of which query

36
21
15

UI modules
UI cards

2
10

source files
 database
 combined engine
 web-based UI
 API

79
425
663
209

binary sizes
 database library
 combined engine
 API library

12.7 MB
67.9 MB
51.8 MB

Table 1: The project in numbers

ARM-based mini-computer
running Linux is used to ac-
cess the hardware via a set of
custom printed circuit boards
(PCB‘s) holding an FPGA and
numerous connectors, e.g.
for USB, Ethernet and SPI. All
control is handled by the Whiz-
niumSBE-developed software
project ICARUSDetectorCon-
trol (Idec) and its combined
engine executable, Ideccmbd.
Ideccmbd is a multi-threa-
ded command-line tool which
communicates with web-cli-
ents and external software th-
rough its built-in application
server and API library.

WhizniumSBE Code Generation/Iteration Service
Use Case: The ICARUS Detector

Job Functionality

JobIdecFusion
fuses the VIS-L image and the LWIR image to form a
four color channel image

JobIdecIllum controls the flood light and spot light LED‘s

JobIdecLwiracq
acquires and processes images from the LWIR (FLIR)
camera

JobIdecMechctl
controls the theta- and phi-axes, reads out the acce-
lerometer / orientation sensor

JobIdecQcdacq
acquires and processes data fom the QCD detector
and locates it with the help of the spot finder

JobIdecRecord
collects data from the image acquisition jobs and
stores/restores them to/from a netCDF file

JobIdecSpotfind
modulates the alignment laser and tries to identify
the laser spot on the images of the VIS cameras

JobIdecStereo
uses images from the VIS cameras to generate a 3D
map

JobIdecTrigger
distributes the software trigger signal to all acquisiti-
on jobs and to the spot finder

JobIdecVislacq /
JobIdecVisracq

acquire and process images from the VIS-L/R came-
ras

Table 2: Hardware and processing jobs

JobIdecVislacq/MS

JobIdecVisracq/MS

JobIdecLwiracq/MS

JobIdecQcdacq/MS

JobIdecSpotfind/MS

JobIdecStereo/MS

JobIdecRecord

JobIdecTrigger/MS

JobIdecFusion/MS

JobIdecIllum/MS

PnlIdecIaqLive

PnlIdecIaqMech

PnlIdecIaqQcdsp

PnlIdecIaqScill

PnlIdecAd1Control

JobIdecAutdet1/MS

JobIdecMechctl/MS

DlgIdecCalPhi

DlgIdecCalTheta

DlgIdecCalQcdnuc

DlgIdecCalQcdaln

DlgIdecCalFusion
DlgIdecCalStereo

Figure 2: Hardware, processing and UI job dependencies ; preferential master
(slave) functionality in red (blue), optional dependencies are dashed

Basic features

The detector‘s subsystems
require a number of parame-
ters in permanent storage, for
which the XML preferences
file is used. Parameters ran-
ge from paths and connector
configurations to geometri-
cal and optical data, to recor-
ding preferences. Binary sen-
sor calibration data, e.g. QCD
per-pixel gain, is stored in
Base64 encoding, along with
look-up tables (LUT‘s), e.g.
for the non-linear relation
between optical pixel power
and target temperature.

Standard UI features, of which
a selection is shown in Figu-
re 3, constitute the organiza-
tional backbone of Ideccmbd.
The UI is multi-language to
allow SAR specialists to con-
trol the detector in their na-
tive tongue, while user access
rights management makes
sure that preferences and cali-
bration features are accessib-
le to maintenance personnel
only. Missions, each corres-
ponding to one disaster res-
ponse, and subordinate tours,

each corresponding to one trip
of the host SUGV and identi-
fied by GPS coordinates, allow
to classify recording files. For
these, the built-in support of

WhizniumSBE for a managed
file archive and the netCDF file
format are used.

Image processing, e.g. for 3D
reconstruction, makes use
of the OpenCV library while
streaming from the optional
PointGrey USB VIS cameras
is handled through their pro-
prietary FlyCapture library.
WhizniumSBE supports se-
amless integration with these
third-party libraries, inclu-
ding Makefile adaptation.

Hardware jobs

Besides the jobs responsible
for UI features (named Crd.../
Pnl.../Dlg...), the source code
tree and run-time job hierar-
chy of Ideccmbd contain hard-
ware jobs, each responsible for
controlling one specific hard-
ware feature ; for a list, see
Table 2. The structured mode-
ling approach of WhizniumS-
BE results in clearly defined
dependencies, as indicated in
Figure 2 - a job pointed to by
an arrow receives input from
(and #include‘s) the origin
job.

Figure 3: Web-based UI showing a) main navigation, b) mechatronics with interactive SVG controls, c) live camera
image as HTML5 canvas, d) optics (geometry) settings, e) PCB connections with color status indicators, f) QCD spot

measurement with clickable pixel selector, g) mission record details

1.) advance initialization of "Csi"
(color status indicator) control

2.) command to displace theta-axis
to -35.0° by UI click or robot decision

3.) XML block sent by web-browser
or robot to Ideccmbd

4.) - N.) XML blocks sent by Ideccmbd
in return to indicate the

displacement progress until done

Figure 4: XML communication for a web UI or API call to displace an axis

a
b

c

de

f

g

The scene illumination job Jo-
bIdecIllum controls the in-
tensities of both floodlight and
spotlight LED‘s. Target angles
for the ϑ and ϕ axes can be
passed to the mechatronics
control job JobIdecMechctl.
It reads back the displacement
progress, for which calibrati-
on of the axes‘ magnetic hall
effect sensors is required. The
job also provides read-out of
the accelerometer.
Using the trigger control job
JobIdecTrigger, either a
hardware or a software trig-
ger signal can be generated.
Both are characterized by
global frame rate and pre-/
post-trigger settings (with re-
spect to the VIS-L trigger) for
the VIS-R, LWIR and QCD ac-
quisition jobs. In the run-time
job hierarchy, each acquisiti-
on job #include‘s the trigger
job. When in software trigger
mode, advanced WhizniumS-
BE modeling options ensure
that the notification of each
acquisition job is handled by a
call in non-blocking fashion,
allowing for real-time syn-
chronization. Firstly, a camera
job which is busy processing
a previous image is skipped.
Secondly, acquisition jobs, all

implemented as state machi-
nes, change into the - possibly
CPU time-consuming - image
acquisition state by using a
different thread than the cal-
ling thread.

The VIS-L and VIS-R acquisi-
tion jobs JobIdecVislacq and
JobIdecVisracq are respon-
sible for the read-out of the
VIS cameras and subsequent
image processing. Standard
web-cam‘s can be accessed
via the Linux V4L2 interface
and specialized cameras using
their proprietary API‘s. Bay-
er-to-RGB and YUV-to-RGB
conversions at full resoluti-
on constitute the first step of
image processing.

As shown in Figure 2, the

VIS-L acquisition job in parti-
cular feeds a large number of
host jobs. Namely, its images
can be displayed to multiple
users and can be recorded at
the same time. They are used
for the generation of depth
maps and of fused VIS/LWIR
images. In addition, they ser-
ve to find the alignment laser
spot. The WhizniumSBE mas-
ter/slave job concept allows
for each host to #include its
own instance of JobIdecVis-
lacq, while at any given time,
only one of these instances is
in master mode and thus re-
sponsible for the processing
of raw sensor data. Further
processing, e.g. resolution re-
duction or color channel ex-
traction takes place in slave

Figure 5: Native MacOS tool accessing Ideccmbd using its API

mode and is customized to the
host job‘s needs. The master/
slave-sensitive implementa-
tion of the job‘s state machi-
ne makes it irrelevant to the
host job whether it is receiving
data from JobIdecVislacq in
master or slave mode. When
the master job is deleted, the
master functionality is au-
tomatically passed on to the
next slave job in line, making
it the new master.

Images from the LWIR came-
ra are acquired through the job
JobIdecLwiracq. A first linear
transform calculates absolu-
te pixel power out of the raw
Analog-to-Digital Converter
(ADC) pixel reading, followed
by a LUT conversion for the
the non-linear relation bet-
ween pixel power and tempe-
rature. The LUT‘s values (16Bit
range), calculated based on
the physics of filtered black-
body radiation, are stored in
the preferences file as a small
number of non-equally spaced
supporting points. Each time
Ideccmbd starts up, based on
them, the actual LUT is calcu-
lated without loss of precision.

The QCD detector job JobI-
decQcdacq is responsible for
controlling all features of the
QCD detector module, inclu-
ding acquisition of data from
the 8x8 pixel detector array
and detector cooling. Raw data
processing starts with a linear
transform from signal to pi-
xel power with pixel-specific
coefficients. This is followed
by a non-linear transform to
obtain the object temperature,
governed by a LUT. QCD‘s
exhibit well-known noise

characteristics, so that tempe-
rature uncertainty can be cal-
culated along.

For alignment of the QCD de-
tector pixels with the LWIR
image, the laser spot finder job
JobIdecSpotfind drives the red
alignment laser intensity with
a sinusoidal pattern which is
synchronized with image ac-
quisition from the VIS-L/-R
cameras. Image processing al-
gorithms are used to retrieve
the laser spot, and to optio-
nally calculate object distance
by means of triangulation.

Remote control

With ICARUS being an integ-
ration project, it is crucial that
other systems, e.g. the SUGV
or the robot command, con-
trol and intelligence (RC2I)
interface, can access the de-
tector in a simple way. This is
achieved by incorporating the
WhizniumSBE-generated C++
API library ApiIdec into exter-
nal tools. It is provided as a set
of methods to write Idec-spe-
cific XML blocks based on C++

objects on one hand, and to
identify and parse XML blocks
received from Ideccmbd on the
other hand. Any action that
can be triggered out of the UI,
e.g. by clicking, can be initia-
ted by the API as well. Figure 4
showcases the XML block se-
quence exchanged for the dis-
placement of the ϑ axis.

Using the API, minimal ef-
fort is required to design fea-
ture-rich native apps with
graphical UI, as demonstrated
in Figure 5. Here, the functio-
nality of two life image panels,
mechatronics control, scene
illumination and recordings
is combined onto one single
screen.

WhizniumSBE, through its ac-
cessor app feature, even helps
writing the Objective-C code
required for non-blocking
HTTPS communications, a
state machine implementing
event-triggered data exchange
sequences, and management
of all data structures shared
with Ideccmbd (similar to the
DOM in a web-browser).

contact@mpsitechnologies.com
+49 175 918 5480

www.mpsitechnologies.com

Helene-Mayer-Ring 4, 04.19
80809 Munich

Germany

More information

•	 WhizniumDBE: The Device Builder‘s Edition for FPGA-based systems, MPSI Tech-
nologies 2018. The tool description is largely based on the Idhw WhizniumDBE project
for the FPGA-based hardware of the ICARUS detector.

