
3/
11

/2
01

8
 v

1.
0

©
 M

PS
I T

ec
hn

ol
og

ie
s G

m
bH

 (a
w

)

WhizniumDBE Code Generation/Iteration Service

•	 WhizniumDBE extends the principles of automated code generation and iteration as
proven by WhizniumSBE to the world of programmable logic (FPGA) register transfer
level (RTL) projects.

•	 Devices supported by WhizniumDBE include Xilinx‘s FPGA‘s and AP SoC‘s. A number
of relevant use cases are available online, ranging from low-end / legacy Spartan3E
and Artix7 systems to high-end latest-generation Kintex7 and Zynq boards.

•	 WhizniumDBE helps modularize FPGA‘s into virtual controllers with functionality-spe-
cific command sets. Code generation covers both the host in terms of a C++ access
library and the FPGA‘s VHDL code down to state-machine level. A second focus be-
sides command execution are bulk data transfers.

•	 The developer can choose between “easy“ and “full“ implementations, the former
being especially lightweight on FPGA resources, the latter permitting non-blocking
command execution and cascaded board hierarchies.

•	 Deployment options for WhizniumDBE include an on-premise container-based solu-
tion, or cloud-based / pay-per-use as an alternative.

•	 Power users can profit from WhizniumDBE‘s template functionality e.g. for develo-
ping products with derivative options. Custom parametrized template RTL modules
can be defined and included as add-ons into the standard WhizniumDBE workflow.

The Device Builder‘s Edition For FPGA-Based Systems

Quick facts

Scope

Development with WhizniumD-
BE covers Register Trans-
fer Level (RTL) source code
for Xilinx FPGA-based de-
vices in VHDL, along with C++
connectivity code which links
these devices to their Linux
host embedded system. Typi-
cal applications include high
bandwidth hardware with
sensitive timing requirements,
such as ADC readout, and ac-
cess to devices with low-level
bus protocols, e.g. LVDS ca-
meras. WhizniumDBE provides
both source code components
in synthesize/compile-ready
fashion already from the first
iteration the recpective pro-
ject.

Device architecture

A device can consist of seve-
ral units or µC/FPGA-based
PCB’s. To form a system, they
are connected in a hierarchical
way, as illustrated in Figure 1.
In a system, exactly one (root)

unit has direkt link to the host
embedded system. All sub-
units are reachable via their
respective host units only.

Depending on the require-
ments for FPGA-level paral-
lelism and available footprint,
each unit can be specified to be
implemented with either the

“easy” or the “full” model.

Both models have in common
that there is a communication
protocol in place between host
and sub-unit which enables
passing of commands with
invocation and return para-
meters on one hand, and per-
forming bulk data transfers on

Controller Task

adxl accelerometer read-out (ADXL345 via SPI)

align alignment laser control (MAX5383 DAC via SPI)

led high power LED control (LT3474 PWM)

lwiracq LWIR camera data interface (FLIR Tau2 via LVDS)

lwirif LWIR camera control interface (FLIR Tau2 via UART)

phiif/thetaif phi/theta axis controller interface (axis2 µC PCB via SPI)

pmmu PMMU with 2MB external SRAM interface (IS61WV20488)

qcdif QCD module interface (icacam2 FPGA PCB via SPI)

shfbox SPI/PWM connectior shuffle box

state state monitor

tkclksrc 10kHz clock source

trigger trigger source

Table 1: Xilinx Spartan3E-based unit dcx3‘s controllers

Figure 1: Example device idhw with details of the “full“-model unit dcx3 and the “easy“-model unit icm2

the other hand. This protocol
features CRC-16 checksums
and is implemented for the
AXI, PCIe, SPI and UART hard-
ware interfaces. The AXI opti-
on allows to design for Xilinx’s
Zynq SoC’s.

Any RTL project is defined hi-
erarchically with the top mo-
dule providing connectivity
to physical FPGA pins. This
architecture is reflected wit-
hin WhizniumDBE units as well,
only that by the specificati-
on of various module types,
added functionality, e.g. in
terms of wiring, is provided
automatically.

The controller is the most re-
levant module type, it is
user-defined to group rela-
ted functionality ; Table 1 lists
the controllers for dcx3, a unit
performing readout of a VGA
thermal imager via LVDS along
with a number of forwarding/
auxiliary functionalities. For
each controller, a command set
can be defined - here is whe-
re the fundamental difference
lies between “easy” and “full”
models.

An example of the “easy” mo-
del is given on the right hand
side of Figure 1, in the icm2
unit. In this case, the auto-
matically generated SPI host
interface module hostif in-
cludes a finite state machine
(FSM) which upon reception of
a command from the host unit
dcx3 sets registers shared with
the respective target controller,

and uses separate req/ack sig-
nals to perform a handshake.
Commands with return para-
meters are also possible, here
the controller sets the registers
to be read back by the host in-
terface to the host. In Figure 1,
this is demonstrated with the
command (ntc) = getNtc()
which performs ADC readout
on request and passes the ADC
reading as return value ntc.

While the “easy” model is
straightforward and benefits
from a low FPGA footprint,
it has the obvious limitation
of being “one command at a
time” which may mitigate the
FPGA’s advantages of paral-
lelism and master clock cycle
accuracy.

The “full” model is dedicated
to non-blocking, concurrent
command execution. An ex-
ample is the dcx3 unit shown
on the left hand side of Figure
1. In the “full” model, an 8bit
command bus cmdbus shared
between all controllers is in-
serted. Handshake is ensured
using controller-specific req/
ack/rdy signals. This solution
comes with an automatically
generated command FSM per
controller. The “full” model
enables delayed and multiple
returns per command invoca-
tion.

From the host point of view,
command invocation and
command returns are buffered
through the cmdinv and cm-
dret memory modules. Cons-

tant polling from the host is
required in order to receive
updates of the “full”-model
unit’s state.

To complete the picture on the
difference between “easy” and
“full” models, in Figure 2 re-
levant code excerpts on both
the RTL and embedded system
sides are presented.

A derivate of controllers are for-
warding controllers which serve
as the host of their sub-units
e.g. dcx3.qcdif in Figure 1.
Their internal wiring is de-
rived automatically from the
hardware interface and mo-
del chosen for their respective
sub-unit.

Inter-module buffers are a se-
cond important module type
which is used to transfer bulk
data between controllers (e.g.
inbuf0LwiracqToPmmu in Fi-
gure 1), but more importantly
between the host and control-
lers. Inter-module buffers can
be specified by direction and
size – they are implemented
as dual-port BlockRAM.

WhizniumDBE‘s remaining
module types include manu-
facturer primitives (e.g. clock
and I/O buffers), manufacturer
cores to incorporate pre-exis-
ting IP, and wrappers – these
can be used to generate test-
benches replacing physical
FPGA pins with debug functi-
onality. Finally, a module ca-
tegory “other” is made availa-
ble for anything that does not
fit into the above types.

hostif
host interfaceSPI

adxl controller

cmdret

command
return
buffer

B A
bufCmdretToHostif

cmdbus
command bus
controller

cmdinv

command
invocation
buffer

B A
bufHostifToCmdinv

dcx3 unit

trigger controller

qcdif

forwarding controller
B A

rdbufQcdifToHostif

pmmu

controller

lwiracq controller

B A
inbuf0LwiracqToPmmu

. . .

. . .command bus

hostif
host interface

SPI

acq

controller
B A

bufAcqToHostif

icm2 unit

. . .
vmon

controller

vref (15..0)

pt (15..0)
ntc (15..0)

vdd (15..0)

vset
controllervtec (15..0)

vref (15..0)
vdd (15..0)

Detailed RTL design

WhizniumDBE‘s in-detail RTL
model reflects the VHDL stan-
dard. Accordingly, within mo-
dules, generics, ports, signals,
processes and variables can be
defined.

Furthermore, WhizniumDBE
provides added-value code ge-
neration for FSM’s (a sub-ty-
pe of processes). FSM’s can be
defined along with their states
and multi-layered stepping
conditions, which are then
implemented automatical-
ly. Also, handshakes between
FSM’s based on their states
can be specified, and signal
values can be made depen-
dent on logical combinations
of FSM states.

The physical layer is cover-
ed by specifying pins grouped
into (I/O) banks. WhizniumDBE
takes care of writing the cor-
responding constraints files.

Development workflow

WhizniumDBE relies on the
proven principles of Whizni-
umSBE for results which are
clearly laid out and easy to
maintain. Per project, it uses
two text-based model input
files, basic and detailed mo-
del description, the contents
of which are listed in Table
2. Meaningful naming con-
ventions with high recogni-
tion value are implemented
throughout: for example, the
10kHz clock source control-
ler tkclksrc of the unit dcx3
of the device idhw is addres-
sed as CtrIdhwDcx3Tkclks-
rc in C++ code. A handshake
between the command (cmd)
and operation (op) FSM’s wi-
thin the controller acq is re-
presented by the signals {req/

ack}CmdToOpInvGetFrame.
Another concept carried over
from WhizniumSBE are inserti-
on points (IP’s), comments in
the respective programming
language (e.g. VHDL), which
mark the locations of manual
code in otherwise automati-
cally maintained source code
files.

The full project workflow is il-
lustrated in Figure 3. Its main
cycle consists of manually
editing the source code tree,
adapting the model files, and
feeding updated versions of
both into WhizniumDBE, which
in turn establishes the next
iteration of the project.

Template modules

RTL modules are predestined
for re-use in multiple projects.
WhizniumDBE provides a num-
ber of simple modules, such
as the UART receiver uartrx
module as ready-to-use VHDL
file.

On top of that, virtually any
functionality can be “templa-

teified” in WhizniumDBE. This
is facilitated by the combina-
tion of 1. a VHDL template file
store with placeholders and
IP’s for automated fill-in, 2.
the reflection of the RTL de-
sign within the WhizniumDBE
master database and 3. the
possibility of parametrization
of templates.

The Page Mapped Memory
Unit (PMMU) controller tem-
plate is a good example: in a
project‘s basic device descrip-
tion, the user specifies which
data “source” and “drain”
modules the PMMU is connec-
ted to, along with the para-
meters of memory, page and
TOC size. WhizniumDBE then
generates the entire module
structure and FSM implemen-
tation required, both in terms
of master database entries and
automatically filled-in IP’s.

The option of implementing
customer-specific modules for
flexible re-use is made avai-
lable to power users of Whizni-
umDBE.

Model component Content

Basic device description systems, targets, units; controllers and inter-module buffers

Detailed device descrip-
tion

banks and pins; commands and errors; generics, ports and signals; processes, variables,
FSM‘s and FSM states

Table 2: Model files and their respective content

Figure 2: 10kHz clock get/set methods: a) C++ library, b) “easy“ VHDL entity,
c) “full“ VHDL entity, d) “full“ VHDL cmd FSM

contact@mpsitechnologies.com
+49 175 918 5480

www.mpsitechnologies.com

Helene-Mayer-Ring 4, 04.19
80809 Munich

Germany

Figure 3: WhizniumDBE development workflow

new project

WhizniumDBE
iteration

synthesize and implement
Xilinx Vivado/ISE

deployment
to FPGA via JTAG

source code
tree

Git support

manual
implementation

model file
editing

PL

