
3/
12

/2
01

8
 v

2.
0

©
 M

PS
I T

ec
hn

ol
og

ie
s G

m
bH

 (a
w

)

WhizniumSBE Code Generation/Iteration Service

•	 WhizniumSBE is an innovative software development tool providing automated code
generation and iteration based on fine-grained model specifications.

•	 WhizniumSBE offers significant time savings and superior source code quality in the
development process of real-time, multi-threaded embedded software. Reference
projects are available online both for ARM-based (RaspberryPi3, gumstix, Zynq) and
for Intel Atom-based (Minnowboard, Galileo) systems.

•	 Development with WhizniumSBE covers all major ingredients of IIoT / Industrie 4.0
software and delivers them in ready-to-deploy fashion: database with access library,
main executable (“engine“) including HTTPS server, node executables (“operation
engines“) to perform compute operations remotely, web-based human-machine in-
terface (HMI) and application programming interface (API) library.

•	 Programming languages employed by WhizniumSBE include C++, SQL, XML and
HTML5/SVG/JavaScript. Connectivity with third-party tools is facilitated by means
of app-generation wizards for C++, C# and Objective-C which in turn use the pro-
ject-specific C++ API library. Communication via industry-standard OPC UA is sup-
ported as well.

•	 To ensure maximum transparency, the generated code only relies on a minimum of
external libraries (libxml2, libmicrohttpd and client libraries to the DBMS used), all
of which are Open Source.

•	 WhizniumSBE places special emphasis on hassle-free intermixing of automatically
generated and manually written code. On source code tree iteration, i.e. the process
of letting WhizniumSBE generate an updated source code tree based on new model
information, manually written code is preserved. Version control is strictly enforced,
optionally using Git.

•	 Deployment options for WhizniumSBE include an on-premise container-based solu-
tion, or cloud-based / pay-per-use as an alternative.

The Service Builder‘s Edition For Connected Embedded Systems

Quick facts

Runtime structure

Application development with
WhizniumSBE results in the
components depicted in Figu-
re 1. From the beginning, they
are available in compile-ready
fashion through the automa-
ted code generation process.

Server-side a combined engi-
ne, written in C++, serves as
the primary executable, ta-
king the role of the controller
in the model-view-controller
(MVC) pattern. It has access to
the application‘s MySQL/PgS-
QL/SQLite database and can
handle client-side requests
within its job processor threads.
Opening client sessions and

performing actions within re-
sults in a dynamic job hierarchy
of C++ objects with dedicated
jobs for sessions, user interfa-
ce features and hardware con-
trol, respectively.

The operation processor threads
are meant for the execution of
atomic compute operations.

All communication with the
combined engine is handled
by means of context-specific
XML data blocks. These can
originate from the web-ba-
sed UI which is provided in the
form of HTML/XML/JavaScript
files. Alternatively, XML block
communication is made avai-
lable through the API library

that can be included in exter-
nal C++ applications.

For debugging purposes, com-
mand-line access is possible.
WhizniumSBE also implements
an interface to a dedica-
ted monitoring/logging tool,
which itself is a WhizniumS-
BE-generated project. It opti-
onally captures all changes to
the combined engine‘s internal
job hierarchy along with XML
traffic, either in a log file or in
a database.

Finally, an XML preferences
file and a managed file archive
provide for permanent stora-
ge.

In an alternative implementa-

Figure 1: Representative situation of a WhizniumSBE-developed project at runtime

tion option of any WhizniumS-
BE project, based on the same
source code, two different ty-
pes of executable can be built:
a single engine on one hand,
and multiple operation engines
on the other hand.

This configuration is intended
for projects running in data
centers: the engine maintains
the role of managing the job
hierarchy, while the multiple
operation engines receive ato-
mic compute task requesrs via
HTTP/XML by the engine.

The engine‘s operation engine
server thread handles the re-
gistration of connected nodes
running the operation engine
executable. Within the engi-
ne, for each node, a dedicated

Model component Content

Deployment information application components and build targets

Global features vectors and data blocks for app-wide use

Database structure tables, vectors, hierarchical relations and stubs

Basic UI structure
cards grouped by modules, adaptations of
presettings

Import/export structure
external data import/export to/from groups of
tables

Custom UI features
custom panels, dialogs, queries and presettings ;
adaptations of the auto UI

Operation pack structure
ops grouped by op packs, invocation arguments
/return values and squawks

Custom job tree features
custom jobs with stages, squawks, vectors and
data blocks ; custom calls ; adaptations of the
auto job tree

Table 1: Model files and their respective content

operation engine client thread is
established, allowing to cons-
truct highly scalable systems,
in cloud environments. Data-
base and file archive are sha-
red between the executables
via network.

Model entry

WhizniumSBE currently uses
a set of tab-separated text
files as input for the appli-
cation model. Header lines
with specific keywords along
with indentation allow for the
specification of hierarchical
structures. For example, table
column definitions are entered
line-by-line, indented by one
tab, below the table definition
line, starting with a corres-
ponding header line. A total

of eight input files, listed in
Table 1, constitute the model.
While these files mainly serve
to enter information, retrieve/
update/remove operarots also
allow for the adaptation of
elements generated automati-
cally by WhizniumSBE.

Deployment information in-
cludes application components,
releases (specific for each build
target), third-party libraries
and make file parameters.

Global features comprise vec-
tors (multi-language enume-
rations) and XML data blocks
(e.g. hardware settings to be
stored in the preferences file)
with application-wide validi-
ty.

The database structure is
composed of vectors and
user-extensible key lists of
different types, main/auxi-
liary/relation/jumper tables
with table columns, associa-
ted vectors, load functions (as
wrappers for frequently used
SELECT SQL statements) and
boolean checks on table fields.
Additional definitions include
relations with sub-relations -
from simple 1:N and M:N to
sophisticated list functionality
with insert/swap/remove ope-
rators ; in total, 39 types with
sub-types are implemented.
Stubs provide multi-language
human-readable represen-
tations of records for manual
implementation in code.

The basic UI structure consists
of cards (each card is displayed

C++ executable
main/combined engine

hardware control jobs

session management and HMI/M2M control jobs

C++ database
access library

monitoring

HMI / HTTPS M2M / HTTPS

> command prompt

database (MySQL,
PostgreSQL, SQLite)

XML
preferences

HTML/XML/JS
store (HMI)

managed file archive

temporary file store

Windows/.NET
C++/CLI acc. app

C++ API library

Linux
C++ accessor app

state m.

C++ API library

MacOS
Objective-C app

C++ API library

Web-browser
DOM

M2M / OPC UA

SCADA

application server
thread

job processor
threads

operation processor
threads

(operation engine
server thread)

(operation engine
client threads) TCP

OPC UA

FS

FS

HTTPS

TCP to Whiznium engine
monitoring

FS

FS

CLOUD / INTERNET

EMBEDDED SYSTEM

DOM DOM DOMstate m. state m.

in an individual web browser
tab) based either on a main
table or with custom functio-
nality. Modules group cards by
specific aspects of the appli-
cation. Session-wide preset-
tings allow for the meaningful
pre-filtering of data in data-
base table-backed cards.

The import/export structure
specifies import/export com-
plexes as patterns for text- or
XML-based data exchan-
ge. Within each import/export
complex, a hierarchical struc-
ture of import/exports defines
the association of external
data with database tables. The
hierarchical structure is nee-
ded to express relations, as
relations within the database
are handled by numerical re-
ferences which are not known
externally. Import/export co-
lumn definitions set the action
to be performed at table field
level (e.g. formatting).

Custom UI featues range from
headbar/headline/list/form
panels, wizard-style dialogs
and controls with optional
feeds (flexible data sources) to
database query structures. For
these, multiple table sources,
ordering, filtering and display
options are available. Additi-
onally, non-standard preset-
tings can be defined. The UI
generated by WhizniumSBE ba-
sed on database and basic UI
structures can be adapted by
adding/removing panels/cont-
rols or by cosmetical changes.

The operation pack struc-
ture outlines operations which
atomically perform compu-
te tasks based on a set (XML
block) of invocation arguments,
returning a set of return valu-
es. Squawks (multi-langua-
ge strings with placeholders)
describe in human-readable
form the operation‘s activity
during execution. Operations
are grouped by operation packs
of similar functionality, e.g.
requiring the same third-par-
ty libraries.

Custom job tree features en-
compass adaptations to the job
hierarchy generated by Whizni-
umSBE based on the UI. Jobs can
be added and complemented
with stages (for state machi-
nes), squawks, command-line
commands, specific vectors
and data blocks. Finally, jobs
can be configured to trigger
and/or listen to calls which
serve for message passing wi-
thin the job hierarchy.

Source code

With WhizniumSBE, automated
code generation is used con-
sistently throughout the enti-
re project lifetime cycle. This
results in a very clean sour-
ce code base, as illustrated in

Figure 2. Meaningful naming
conventions, designed care-
fully as the best trade-off bet-
ween clarity, uniqueness and
brevity, ensure fast familiari-
zation for development teams.
Examples include TblBrlyM-
Location for a main (“M“) ta-

a

b

c

d

Figure 2: Exemplary source code trees with naming conventions for a) databa-
se access library, b) engine/operation engine, c) web-based UI, d) API

Figure 3: Insertion point in C++

ble (“Tbl“) of locations within
the BeamRelay (“Brly“) project
and PnlBrlyLocBgn1NLeg for
a panel (“Pnl“) displaying the
1:N (“1N“) relation of a loca-
tion (airport) and legs (rou-
tes) beginning there as part of
the location (“Loc“) card. The
operation BrlyMapgenConmap
produces a dynamic map of a
relay connection as part of the
operation pack BrlyMapgen for
map generation.

An important aspect of code
generation is the harmonic
co-existence of automatically
generated code and manually
written code. In WhizniumS-
BE projects, this concerns the
sources for the engine/operati-
on engine and for the web-ba-
sed UI. Generally, all source
code files generated by Whizni-
umSBE can be edited to cont-
ain custom code at predefined
insertion points. Figure 3 out-
lines this for the manual im-
plementation of a stub.

Insertion points are comments
in the respective programming
language. Their full advantage
is revealed on version stepping
or source code tree iteration,
which is required every time
the model is updated. In the
process, WhizniumSBE scans
the existing sources for edited
insertion point content, gene-
rates new sources based on the
updated model and re-inserts
manual code found previously.
Besides the INSERT/IBEGIN/

IEND directives, BEGIN/END
vs. RBEGIN/REND tokens allow
for the replacement of code
generated automatically. The
insertion point functionality is
complemented by an in-file
directive to copy a file on ver-
sion stepping and by a key file
name to retain an entire fol-
der.

Web-based user interface

Standard features of the mul-
ti-language web-based UI,
depicted in Figure 4, include
a login screen and a navigati-
on card with access to all other
cards, grouped by modules. A
record access history is inclu-
ded as well. Access rights can
be defined on card and/or re-
cord level, both for individual
users and user groups.

While custom cards, e.g. for
hardware control, allow for
freely definable panels, all da-
tabase table-backed cards fea-
ture the same layout: the up-
per half is occupied by a list of
records while the lower half
shows record-specific data.
Within the lower half, record
manipulation and custom
views are available on the left

hand side. In particular, the
detail panel offers a multitu-
de of fine-grained display and
editing options, depending on
the nature of the table columns
and relations concerned. The
panels on the right hand side
serve as the link to other cards,
as established by underlying
1:N and M:N relations.

API access

The philosophy behind API ac-
cess to a WhizniumSBE combined
engine for machine-to-ma-
chine (M2M) communicati-
on is that every view that is
present in the web-based UI
and every action that can be
triggered e.g. by clicking, has
an API library equivalent that
exchanges the same XML data
blocks as the web browser.

This method ensures that all
access is authenticated, as the
first step of API interaction is
to start a session (login screen
equivalent).

To effectively make use of the
API library, it is also required
to maintain a copy of certain
XML data blocks received cli-
ent-side - in the web-brow-

ser this is handld by the Do-
cument Object Model (DOM).
Further, typical tasks, such as
waiting for a record in a view
and then add new sub-records
to it, require multiple sequen-
tial interactions with the com-
bined engine.

In M2M, the former can be
replaced by a set of C++ run-
time objects, and the latter can
be expressed as an event-dri-
ven state machine.

The accessor app generation
feature in WhizniumSBE hel-
ps to write the code for this
scenario with the input speci-
fied in the form of a separate,
accessor app specific, model
file.

It provides code generation for
integration into native Linux,
Windows .NET and MacOS
projects by using the respec-
tive C flavors. The delivered
code also comes with the re-
quired platform-specific HT-
TPS communication methods.

Development workflow

The full project workflow is il-
lustrated in Figure 5. Its main
cycle consists of manually
editing the source code tree,
adapting the model files, and
feeding updated versions of
both into WhizniumSBE, which
in turn establishes the next
iteration of the project. Whiz-
niumSBE features built-in Git
synchronization with remote
repositories.

It is noteworthy that Whizni-
umSBE itself is a WhizniumSBE
developed service. As a result,
its web-based UI features can
be accessed via API, as eviden-
ced in the top center of Figure
5: a project iteration requires
multiple model file uploads,
clicks and then finally, source
code downloads. For conveni-
ence, all this functionality was
integrated into a native MacOS
tool, WhizniumSBE Iterator,
which allows version stepping
in six clicks.

Figure 4: Web-based UI examples ; auto-generated with the exception of a
custom SVG control in the “Mechatronics“ panel on the right hand side

More information

•	 The ICARUS detector, 2016 - control software for a complex embedded system with
visible and infrared image data processing capabilities.

•	 The FabSight project, MPSI Technologies 2018 - an IIoT Whiznium example from
chip level to cloud-based data collection with muliple uses of the API functionality.

•	 The BeamRelay project, 2014 - a sophisticated simulation of commercial air traffic
using distributed computing in the cloud.

contact@mpsitechnologies.com
+49 175 918 5480

www.mpsitechnologies.com

Helene-Mayer-Ring 4, 04.19
80809 Munich

Germany

Figure 5: WhizniumSBE development workflow

new project

model file
“starter kit“

WhizniumSBE
iteration

(cross-)compilation
build

gcc/llvm toolchain

deployment
cloud/workstation/embedded

source code
tree

Git support

manual
implementation

model file
editing

