-

MPSI

TECHNOLOGIES

Y
o
Y

WhizniumSBE

Machine-to-Machine Communication in
WhizniumSBE Projects

White Paper

August 17, 2018
updated September 19, 2018

Alexander Wirthmuller
aw@mpsitech.com

MPSI Technologies GmbH

FOR INTERNAL USE

1 INTRODUCGTION. ... uttiiiieiiiinieiiesies st ess s sae s s eb s e st s s sesb e s sbas s eba e s sabasseabaeesnbasssnassns 4

2 THE MULTI-SPECTRAL DETECTOR PROJECToiiiiiiiiiiininiciniinniniesissnsncs e ssnessisnessneens 6
2.1 Tilt sensor (TODMSACACAARL) .iicicrvureiriisssuneriiiissnneiisisssnesssssssssessssssssssssssssssssesssssssssesssssssssssssssssassessss 6
2.2 Thermal imager (JODMSACACGLWIT) wuiiiiiirieeriiiissnnriiiisssnneississsssessisssssssessssssssesssssssssesssssssssssssssssansessas 6
2.3 Visible light cameras (JObDMSACACGVISL/VLIST) ciiccciirirciririiniinsnniiisesisssesssnsssssasssessssessssssssessssasasns 7
2.4 Alignment laser (JODMSACACEALIQN) iiiicvceeiiiiisinniiiiiiinneisiisiseessssssssnssssssssssesssssssssesssssssssssssssssansessas 8
2.5 High power LED’s (JODMSACACLELEA) .iiiiiivcureiiiiissnniiiiiisneeississssesissssssssssssssssssessssssssesssssssssssssssssansessas 8
2.6 Tilt-pan unit (TODMSACACLTSEIVO) tiiccicerrrrrnnnnnneeeerietiiiiiiissssssssssssnsnnsessssassessssssssssssssssssnnnsssssssssssssssssssss 9
2.7 3D reconstruction (JODMSACPICSEEIEO) wcciviiiiiiiiiiiiniernnnmssssssssssiiisssiinnmneessssssssssssssssssssssssnnmssssssssssssss 9
2.8 Contour tracking (JODMSACPICTIACK) ..uuueeeemmereeerieriesiiiiiiisssssssssnnnnesssssssssssssssssssssssssssnnnsssssssssssssssssssns 9
3 WHIZNIUMSBE PROJECT ARCHITECTURE.......cctiiiiiiniiiiiiieniiis st ssnscescessissssesnessnes 10
K 200 B oo 1Tt oo T 4§ o o 4 T=T o N 10
3.2 FUNCtionality SEIECHION......cciiiiiiiiiiiiiiirii ittt aan e 10
3.3 Preferences file.......cuiiiiiiiiiiiiiiint e 11
2 B 1 4TI T <8 = S 12
3.5 MaSLEr/SIAVe JODS......ccccerereireeerrerereereteeseeretessneseseesssesesaesentesssesessessnsasssessssesssesensessnsssssessnsessnesensessanasnes 12
3.6 Calls and call ISteNers..........ciccieiieiiiiiiiiiniiiti e s s e sa e s an e s ansanne 13
3.7 Methods and variablescciiiiiiiiniiiiiini e 14
3.9 Access rights MaNageMENteeiiiiiiiiiiiiiiiiiiiiiiirr s saas e s s s as s s s s s s as s e s s s s sannens 15
4 GENERIC HTTPS/XML M2M COMMUNICATIONcovtiriiririenieresienesiesesesssessesessessessessensenses 16
4.1 XML data BIOCKScccuiieiiiiiiiiiiiiniiicieniiinn e e s e s s nn e 16
2 0 11 4T of o =N 16
4.3 Dispatch collectors and 10ng POIlING........ccceeiiiiiimiiiiiiiiiiiiiiirrr s s ssaaes 17
4.4 C++ and Java APLIIDIariescuieieiiciininiiniiiicniiicieniisseni s sesssnessssssssessanssssesssnessanssssenss 17
4.5 ACCESSOI QPPS ceveeennunussssiiiisririteereressssssssssssiiiiiiimtttteeeesssssssssssssiisisiitttttttessssssssssssssiesssssssteeeeessssssssssssssssssss 17
5 OPC UA POWERED BY MATRIKON® FLEX OPC UA SDKccouereeieeeeieeieseeseeseeseeseesseeseasnees 18
6 DDS POWERED BY RTI® CONNEXT™ DDS PROFESSIONAL SOFTWARE.........ccovcerneriercereenen. 19

7 CONNECTIVITY COMPARISON CHART ...oiiiiiiiiiiciienniis et ssinssssiesssnsseseessissssessessaes 21

APPENDIX A: MULTI-SPECTRAL DETECTOR FPGA-BASED SUB-SYSTEMccocceiiiiiniinienienncnee, 22

APPENDIX B: MPSI TECHNOLOGIES MODULAR VISION DEMONSTRATOR.......ccocccirienienniennianee, 23

This document is copyrighted and confidential material owned by MPSI Technologies GmbH,
Munich/Germany.

1 Introduction

The Whiznium product line provides embedded software developers with innovative tools
that make use of automated code generation for the development of feature-rich
applications, e.g. in 10T, computer vision and robotics.

The Whiznium Service Builder’s Edition (SBE) targets hardware control applications that are
based on Embedded Linux powered boards such as the Raspberry Pi 3, Minnowboard Turbot
or ZedBoard. Hardware can range from sensors, cameras and servo drives to complete
FPGA-based sub-systems. Based on a fine-grained model definition, WhizniumSBE generates
C++ code for an application-specific multi-threaded main executable in build-ready fashion,
along with a SQL database, web-based user interface (Ul) and numerous connectivity
options.

The range of capabilities covered by WhizniumSBE and by its sister tool for FPGA system
development, WhizniumDBE, is illustrated in Figure 1.

M2M / HTTPS

Linux
C++ accessor app
DOM state m.

C++ APl library

Windows/.NET
C++/CLI acc. app
DOM | state m. M2M / DDS M2M / OPC UA
C++ AP library powered by powered by
HMI/ HTTPS Connext™ DDS an®
MacOS VM (Y sotvae @ Natrikon'| FLEX
Objective-C app Java accessor app
. Web-browser DOM | state m. DOM ' state m.
DOM e.g. UXV lloT, e.g. SCADA
CLOUD / INTERNET C++ AP library Java AP library
HTl\gtLéfeNzh/’dIS) Ia session management and HMI/M2M control jobs
XML la application server H . managed file archive
preferences thread
(operation engine C++ executable job processor i
server thread) >command prompt i /e mbined engine threads temporary file store

@ (opllera:i(t)'_ln ené;ine operation processor C++ database A ‘ database (MySQL,
EMBEDDED SYSTEM client threads) threads access library U PostgreSaL, SQLite)
WhizniumSBE 4 hardware control jobs monitoring @ :;’:Vm:‘(')zr'i"r'];m engine
domain A
WhizniumDBE ¥ (non-blocking)
domain v C++ device access library (easy) C++ device access library (full)

serial command continuous
execution polling
host host [
controllers controllers PCB1

DEVICE LEVEL Xilinx Zyng Xilinx Kintex

automated code generation

PCB2 PCB3 mixed generated/manual code
Figure 1: Schematic view of device level, embedded system and cloud/internet parts of a Whiznium-powered application
along with the corresponding source code features.

This document focusses on Machine-to-Machine (M2M) communication, i.e. the
connectivity options which allow WhizniumSBE-powered applications to interact with other
machines. Scenarios include, but are not limited to, the transfer of life machine health data
into the cloud, or the real-time provisioning of pre-processed vision information within a
smart robotics system.

M2M communication for WhizniumSBE can be subdivided into two categories: on one hand
there is the exchange of generic XML data blocks via HTTPS which closely follows the web-
based Ul or Human-Machine-Interface (HMI). To simplify the process of developing client-
side applications, WhizniumSBE provides project-specific C++ and Java APl libraries, along
with supporting code generation for C++/CLI/Objective-C and Java.

On top of the generic option, the developer can choose to embed an industry-standard OPC
UA server and/or a DDS publisher. The OPC UA server functionality is provided by means of
the Matrikon® Flex OPC UA SDK, whereas RTI® Connext™ DDS Professional Software is used
to ensure standard-compliant DDS connectivity. OPC UA and DDS bypass the structure given
by the HMI and rather provide low-level access to hardware-related methods and variables.

Both M2M communication categories have in common that detailed access rights can be
attributed to various user roles.

In the following chapters, the Multi-Spectral Detector will be introduced as an example for a
complex WhizniumSBE-powered project. Its features and source code will then be used to
shine a light on the mechanisms that make M2M communication in WhizniumSBE projects
work. The document concludes with a comparison chart for generic vs. OPC UA vs. DDS
connectivity.

2 The Multi-Spectral Detector Project

The embedded system used to describe M2M communication is one variant of MPSI
Technologies’” modular vision demonstrator. This demonstrator, conceived to highlight the
full breadth of Whiznium’s capabilities, can be re-configured e.g. to include low-cost USB vs.
high-end GigE cameras. Also the embedded hardware can be re-arranged from an all-
programmable Xilinx Zyng SoC (ARM cores and FPGA hard-wired in the same package) to
separate high-performance Intel Atom quad-core and Xilinx Kintex7 FPGA boards.

The actual configuration chosen here is depicted in Figure 2.

alignment laser

tilt/pan unit

ZedBoard
(Dual-ARM + FPGA)

VIS-L camera
(1.2MP GigE)

VIS-R camera
(1.2MP GigE)

In the following sub-chapters, a brief description of each relevant hardware handling /
processing feature is given ; the job identifiers (see chapter 3.2) in parentheses denote the
C++ class which is responsible for handling the respective feature.

LWIR camera
(120x160 pix)

Figure 2: picture of the vision demonstrator.

2.1 Tilt sensor (JobMsdcAcgAdxl)

The tilt sensor is an Analog Devices ADXL345 3-axis accelerometer which is surface-mounted
onto the detector’s mainboard. Its readout via SPI is handled in the FPGA sub-system. The
sensor serves as the digital equivalent of a water bubble.

2.2 Thermal imager (JobMsdcAcgLwir)

A FLIR Lepton3 thermal imaging core based on microbolometer technology for long-wave
infrared (LWIR) light is used to obtain 120 x 160 pixel thermal images at a rate of 9Hz.
Control and readout is accomplished via I12C and SPI interfaces, respectively. Both

functionalities are implemented in the FPGA sub-system, including on-FPGA buffering and
streaming of frames.

An exemplary scene is shown in Figure 3.

Figure 3: The same scene as LWIR image (left) and as visible light image (right). The most prominent feature in the infrared
is the hand due to its thermal signature, whereas the brightest feature in the visible range is the red alignment laser spot.

2.3 Visible light cameras (JobMsdcAcqVisl/Visr)

Machine vision is enabled by dual FLIR BlackFly Gigabit Ethernet cameras which provide
1280 x 960 pixel RGB images at frame rates of up to 52fps. FPGA-generated trigger signals
allow for the time-synchronous acquisition from the left (VIS-L) and right (VIS-R) cameras.

The screenshot in Figure 4 shows two simultaneous web-based Ul sessions, streaming from
VIS-L and VIS-R, respectively.

“ 192046824

Al it
.| Aignmen .| Alignment

Scene dlumination
. e . | Scene ilumination

| Contour tracking . | Contour tracking

Figure 4: VIS-L and VIS-R views of the same scene.

2.4 Alignment laser (JobMsdcActAlign)

The system features a red 635nm alignment laser (eye-safe, sub 1mW class), the optical
output of which can be modulated continuously with an analog input signal. This signal is
generated by a Maxim MAX5711 DAC which in turn is controlled from the FPGA sub-system
via SPI.

The laser provides a visual feature with unique fingerprint to be detected by the VIS-L/R
cameras. To this end, laser modulation is synchronized with the VIS-L/R hardware trigger
signals, resulting in the exemplary time-series shown in Figure 5.

frame 0 (t=0) frame 1 (t=250ms) frame 2 (t=500ms) frame 3 (t=750ms)

frame 4 (t=1s) frame 5 (t=1.25s) frame 6 (t=1.5s) frame 7 (t=1.75s)

frame 8 (t=2s) frame 9 (t=2.25s) frame 10 (t=2.5s) frame 11 (t=2.75s)

frame 12 (t=3s) frame 13 (t=3.25s) frame 14 (t=3.5s) frame 15 (t=3.75s)

Figure 5: Time series of the VIS-L camera synchronized to the alignment laser running a sinusoidal sequence with a period
of 4s. Peak intensity at t=500ms.

2.5 High power LED’s (JobMsdcActLed)

A spotlight (2x 15° opening angle) and a floodlight (2x 60° opening angle) are driven by each
one Linear LT3474 step-down converter in constant-current mode. The apparent light
intensity is regulated with 100Hz PWM signals (1% to 100% duty-cycle) which are generated
by the FPGA.

The corresponding web-based Ul controls are shown in Figure 6.

8

_ | Szenenbeleuchtung]

Scheinwerfer ” 0.75
spot |} 0.01

Figure 6: Web-based Ul panel for controlling the LED intensity for a German-speaking user.

2.6 Tilt-pan unit (JobMsdcActServo)

For advanced functionality such as feature tracking, the alignment laser can be rotated
around two axes. The hardware implementation uses two standard RC servos which use a
FPGA-generated PWM signal to set their respective angles.

Figure 7 shows the web-based Ul for manual control of this feature.

_ | Ausrichtung =]

Kippwinkel a [°] [0.000000 |
Kippwinkel B [°] [0.000000 |

9-Achse I -15
¢-Achse i 5

Figure 7: Web-based Ul panel for manually controlling the tilt-pan unit. The tilt angle read-out is visible as well.

2.7 3D reconstruction (JobMsdcPrcStereo)

WhizniumSBE applications are multi-threaded and well-suited for running multiple
concurrent tasks. Event-driven activation of certain (post-)processing jobs, in this case the
combination of time-synchronous VIS-L and VIS-R frames to a depth map as they become
available, can be modelled in detail, resulting in robust, powerful source code.

The stereo vision feature / generation of a depth map is currently under revision. It makes
use of standard algorithms provided by the OpenCV framework.

2.8 Contour tracking (JobMsdcPrcTrack)

Another planned feature is the recognition of a “same-color” shape within the view of the
VIS-L camera which is subsequently tracked by the red alignment laser. This feature implies
combining JobMsdcAcqVisl, JobMsdcActAlign and JobMsdcActServointoa
closed feedback loop.

3 WhizniumSBE Project Architecture

3.1 Project components

The development process with WhizniumSBE results in the compile-/ deploy-ready source
code components which are highlighted in bold in Figure 8. The naming conventions of

WhizniumSBE require a 4-letter abbreviation for each project, Msdc was chosen for the
detector project.

~mdl/msdc

model files ; information to be processed by
WhizniumSBE

msdccmbd

C++ source files for main executable (“combined
engine”) ; auto-generated with manual insertion
points

msdccmbd/Msdccmbd exe.cpp

command line and entry point int main ()

msdccmbd/MsdccmbdAppsrv. cpp

HTTPS server for generic communication

msdccmbd/MsdccmbdDdspub . cpp

DDS publisher

msdccmbd/MsdccmbdUasrv. cpp

OPC UA server

_ini/msdc

IDL input file for RTI® Connext™ DDS Code
Generator

rls/dbsmsdc*
_rls/msdccmbd *

shell scripts and make files to perform builds on
several platforms

webappmsdc JS/HTML/XML files for the web-based Ul ; auto-
generated with manual insertion points

_ini/dbsmsdc SQL script to establish the SQLite database,

—iiiﬂzjggﬁj—* platform-specific preferences file, XML file to

B populate the SQLite database (initial fill)

apimsdc C++ source files for the API library

dbsmsdc C++ source files for database access (by table /
vector)

japimsdc Java source files for the API library

Figure 8: Project folder overview, by order in which components are needed.

All further discussion is related to the main/combined engine code, to be found in the
msdccmbd folder.

Link to code: https://github.com/mpsitech/MultiSpectralDetectorControl

3.2 Functionality selection

WhizniumSBE model specification is done using eight text-based model files in total, each
representing one aspect of the model, e.g. database, user interface or deployment.

Connectivity options to be implemented in code on the other hand are part of each project

version’s standard functionality selection, as shown in Figure 9.

10

WhizniumSBE 0.9.10 rControl - e

A Nicht sicher | bttps://192.168.2.4:13106/web/CrdWznmVer/CrdWznmVer.html?scrdref=6omiui7635ry0dci h g n

7WhlzniumSBE Version

. Versions (14)

Version
MultispectralDetectorControl 0.1.45

_ project [MultispectralDetectorControl jal . l Blocks (452)
major version number (0 . .
’ Derived versions (0)
minor version number |1 +

sub version number |45 l Components (5)
+

base version [MultispectralDetectorControl 0.1.44 | 7]

primary locale [enus / English (United States) | A + ’ Calls (67)

15-8-2018 21:3¢ 4
. ’ Import/export complexes (1)

state | build-ready 4
DBMS types - [MySQL InnoDB ‘Jobs ©7)
IMySQL MyISAM +
[PostgreSQL .
ke . ’ Operation packs (0)

.] Modules (3)

cloud types -}~

standard functionality & [onitoring to catavase
DDS publisher

[nier. organizatons
forganizations

OPC UA server

. ‘ Presettings (53)

S —

. ’ Queries (14)

IRt . l Relations (45)
about text, part 1 [\ ispectralDetectorControl
provides users and machines l
with access to the MPSI + Tables (38)

Technologies Stereo+LWIR

N

. ’ Vectors (145)

about text, part 2

. l Accessor apps (0)

abouttext, part 3 .] Files (7)

p . ’ Locales (2)

comment

&

Figure 9: Msdc version 0.1.45 overview including DDS publisher and OPC UA server selected as standard functionality.

3.3 Preferences file

Complex embedded systems come with a great deal of parameters ; in WhizniumSBE, these
can be attributed to specific hardware control functionality and their corresponding C++
classes (jobs). The auto-generated code takes care of automatically loading and storing all
settings using a common XML preferences file.

WhizniumSBE’s auto-generation feature for web-based Ul's makes it particularly simple to

establish a human-readable and -writable interface to settings data. For Msdc, this is
illustrated in Figure 10.

11

<?xml version="1.0" encoding="UTF-8"7?>
<PrefMsdccmbd>

general settings, e.g. which
connectivity options to activate

-:/Stqﬁ‘s}ﬁ(ﬂbd:-

Stgisdcuasrvo OPC UA server settings

<Si sref="profile“>./EmbeddedProfile_StandardNodes.xml</Si>
<Si sref="port">4840</Si> 4/

<si s ycle">100</Si>
<Si s ="maxbrowse'">1000</Si>
</stamsdetairvn O 10000/51> DDS publisher settings

<StgMsdcDdspub>
<Si sref="username">m2m_adm</Si>

<Si sref="password">rkkeak</Si>
</StgMsdcDdspubs>

<StgMsdcDatabase> = - .
i LAR] MultispectraiDetectorControl R MutispectralDetectorContro

</StgMsdcDatabase>

ctonsdcPaths A Nicht sicher | https://192.168.2.4:13109/web/CrdMsdcScf/CraMsdeSch.htmi?scrJref=q7 lym2hap7rbdov
<> MultispectralDetectorControl System configuration
</StgMsdcPaths
Sources =
<StgJobMsdcSrcMsdd>
<Si sref="path">/dev/zedb</Si> FPGA board

<Si ="adx1A">0.004</S1i> character Gevice path |devityUSB2
: . apLss) l0.00¢
@ I+ 639
o 1 183
31 ref"eervoPhion>0e/sis *"“”‘"‘"""“’"“’] | ——
</StgJobMsdcSrctsdd> servos ams] i L —
<StgJobMsdcSrcTrigger> sevo%0(1] it o
<5i sref="dt">0.25</Si> senv0 00 (7] it | —
</StgJobMsdcSrcTrigger>
Acquisition features ®
LWIR camera
sorial numoe [
pixel size fum) 12000000

ER focal lengeh () [§.050000

</StgJobMsdcAcqlwir>

<StgJobMsdcAcqVis > Howmoer [1:100000
<Si sref="srefIxMsdcVCamtype"/> &‘» VIS cameras

1yD v PointGrey BlackFly
visL —

VIS-R pamn [Gevivideot
pixel size [uum) [3.750000]
focal length (] [5.000000]
tumber 1200000]

</StgJobMsdcAcqVis 1>

<StgJobMsdcAcqVisr> _ | Actuation features O]
</StgJobMsdcAcqVisr> Servos ‘
ma. 9] { 40
<StgJobMsdcActServos max 311 it bs
<Si sref="thetamin">-40</Si> I .) ”
<Si sref="thetama </Si> 4___._——-——' o i . - I
<Si sref="phimin">-40</Si> max o1 - o
Si sref="phimax": </Si>
</StgJobMsdcActServo> ‘Proeessingandeonmlleamres

</PrefMsdccmbd>

Figure 10: XML preferences file (left) along with web-based Ul for job-specific settings (right).

3.4 The job tree

At run-time, each WhizniumSBE-powered project stores session state data in a hierarchical
structure of objects, the job tree. In terms of code, each super-job #include’s its
respective sub-jobs. A single root job RootMsdc manages the establishment of HMI and
M2M session jobs, while the HMI/M2M session jobs SessMsdc and M2msessMsdc
provide their sub-jobs with information about feature access rights.

All further jobs are either responsible for Ul elements (cards - CrdMsdc..., panels -
PnlMsdc.., database queries - Qr yMsdc... and dialogs - D1gMsdc...) or for hardware
control (JobMsdcAcgq.../Act.../Src..).

3.5 Master/slave jobs

In embedded systems, it is crucial that at any given time only one programmatical element,
in this case a job, is in control of a specific hardware feature. For instance, it is not desirable
to have the tracking algorithm JobMsdcPrcTrack trying to position the alignment laser
spot (via JobMsdcActServo), while simultaneously a human operator is providing
conflicting input via the web-based Ul. Sensor data on the other hand may have multiple

12

recipients - a good example is the VIS-L acquisition job JobMsdcAcqVisl:image data can
be provided to several HMI and M2M sessions for external processing, while Msdc-
internally, VIS-L images are processed by the stereo (JobMsdcPrcStereo) and contour
tracking (JobMsdcPrcTrack) algorithms.

WhizniumSBE provides the option to equip a job with master/slave functionality. This
feature ensures non-conflicting control and multi-party access of hardware. Mutex-
protected and seamless transitions of a classes’ master control from one object to another is
implemented within the auto-generated source code fabric. Master/slave jobs share
common (in C++, static) data and application-internal calls (see below) ensure that
updates by the master job are passed on to all respective slave jobs of the same class.

3.6 Calls and call listeners

Jobs within the job tree can communicate with one another by triggering and listening to
calls. Calls may carry a limited amount of data as invocation and return arguments. A central
feature in each WhizniumSBE-powered application ensures the matching of triggered calls to
registered call listeners.

For example, the web-based Ul’s navigation card job CrdMsdcNav triggers a number of
CallMsdcCrdActive calls to find out which navigation targets (cards) to show to / hide
from the user. Based on user group/user access rights, these calls are answered by the
session job SessMsdc up the job tree hierarchy with a view/edit/execute return argument.

Once the user chooses a navigation target to open as a new web-browser tab, e.g. a new
“System configuration” card, CrdMsdcNav triggers a Cal1MsdcCrdOpen call to which
again SessMsdc would reply with the new card job’s reference, once the corresponding
card job CrdMsdcScf is established successfully. Both call scenarios are highlighted in the
job tree shown in Figure 11.

+ RootMsdc (1)

+ SessMsdc (21)

+ CrdMsdcNav (22, dcol)
- PnlMsdcNavHeadbar (23)
- PnlMsdcNavPre (24)
- PnlMsdcNavAdmin (25)
- PnlMsdcNavOpr (26)
+ CrdMsdcScf (27, dcol)
+ PnlMsdcScfSource (28)
+ PnlMéa;ScfAcquis (31)
+ JobMsdcAcgAdx1l/M (32)

- JobMsdcSrcMsdd/S (33)

- JobMsdcSrcTrigger/S (34)

13

Figure 11: Partial job tree for a HMI session with navigation card and system configuration card opened. Call listeners in

Calls are also used to notify the OPC UA server and DDS publisher of updated job variables.

+ JobMsdcAcqglLwir/M

+ JobMsdcAcgVisl/S (38)

+ JobMsdcAcgVisr/S (40)

+ PnlMsdcScfActu (42)

- PnlMsdcScfHeadbar (67)

(35)
- JobMsdcSrcMsdd/S (36)
- JobMsdcSrcTrigger/S (37)

- JobMsdcSrcTrigger/S (39)

- JobMsdcSrcTrigger/S (41)

3.7 Methods and variables

gray.

Hardware control jobs are shielded from external users in the web-based Ul / generic

connectivity scenario where all access is handled via Ul jobs higher up the job tree, and XML
data blocks are employed for HTTPS communication. However, M2M sessions used for OPC
UA and DDS allow low-level access to all methods and variables specified in the specified in

the application model.

The set of Msdc methods, along with their invocation and return parameters is listed in

Figure 12 ; the set of variables is listed in Figure 13. For the latter, both shared and instance-

specific data can be made visible to the outside.

14

JobMsdcAcqgLwir:
(boolean success) = setOutput (vecsref ixMsdcVSgrgrp)
(boolean success) = start()
(boolean success) = stop()
JobMsdcAcqVisl:
(boolean success) = setFocus (float focus)
(boolean success) = setOutput (vecsref ixMsdcVCamres, vecsref ixMsdcVSqgrgrp,
boolean grayscale)
(boolean success) = setTint (float Tint)
(boolean success) = start()
(boolean success) = stop()
JobMsdcAcqVisr:
(boolean success) = setFocus (float focus)
(boolean success) = setOutput (vecsref ixMsdcVCamres, vecsref ixMsdcVSqgrgrp,
boolean grayscale)
(boolean success) = setTint (float Tint)
(boolean success) = start()
(boolean success) = stop()
JobMsdcActAlign:
(boolean success) = setWave (vecsref ixVFunction, utinyint N, floatvec seq)
(boolean success) = start()
(boolean success) = stop()
JobMsdcActLed:
(boolean success) = setFlood(float flood)
(boolean success) = setSpot (float spot)
JobMsdcActServo:
(boolean success) = setPhi(float phi)
(boolean success) = setTheta(float theta)
Figure 12: Multi-Spectral Detector Control methods by job.

JobMsdcAcgAdxl:

{float alpha, float beta}
JobMsdcAcqgLwir:

{uint segno, double t, usmallintvec grayl6}
JobMsdcAcqVisl:

{uint segno, double t, utinyintvec rgbx8, utinyintvec gray8}
JobMsdcAcqVisr:

{uint segno, double t, utinyintvec rgbx8, utinyintvec gray8}
JobMsdcActLed:

{float flood, float spot}
JobMsdcActServo:

{float theta, float phi}

Figure 13: Multi-Spectral Detector Control variables by job.

3.9 Access rights management

Regardless of the connectivity option chosen, no access to WhizniumSBE-powered
applications is provided to outside stakeholders without first establishing a session. Sessions
are opened either using a username/password combination or a known X.509 certificate.
The auto-generated database holds information about user groups and users, along with
dedicated feature access rights at arbitrary granularity.

Features for web-based HMI and generic M2M sessions comprise all cards, whereas OPC UA
and DDS M2M sessions use methods and variables as features for which credentials can be
administered. Examples are shown in Figure 14.

User group
_ | msdcusers

Details
+
_ | Feature access rights == % > msdcuser / Emiy Johnson adm
> msdcuserdecn / Julia Schmict aom
> Vecmsdevcard CraMsacUsg edtexeciew
> VecMsdcvCard CraMsacUsr editexecview
> VecMsdcvCard CraMsacPrs. edit.execview
> VecMsdcvCard CraMsacSct editexecview
|> VecMsdcvCard CraMsccLiv edtexecview
> VecMsdcvCard CraMsccPrd editexecview
> VecMsdcvCard CraMsacDat edit.execview
> VecMsdcvCard CraMsccFil editexecview
‘1-20!2 Goto. «O» « C
1808 Goto... O « C
User
_ | m2m_few_rights / (no person)
. Details +‘Sessions (0)
Feature access rights == % *‘Usergroupsm)

> VecvJooMsdcAcqAdxiVar
> VecvdooMsdcAcqLwirMe. exec
> VecVJobMsdcAcqLwirvar view
[> VecviooMsdcActLedMethod setFiood exec
> VecvJobMsdcActLedVar view
> VecvJooMsdeActServovar view

‘usovs Goto.. «ON « C

Figure 14: Definition of card (HMI) access rights by user group on top, definition of job method/variable (M2M) access
rights for a specific user below.

15

4 Generic HTTPS/XML M2M Communication

All connectivity options that are based on the HMI or web-based user interface (Ul) rely on
exchanging the same type of XML blocks that a web browser would use in POST requests via
HTTP/1.1. No direct hardware control job access is possible, as only root, session, card, panel
and dialog jobs exchange dispatches (see 4.2).

4.1 XML data blocks

All data blocks fall into exactly one category of those listed in Figure 15.
Serializers/deserializers from/to C++ objects are auto-generated by WhizniumSBE in
accordance with the “direction of travel” (engine-app, app-engine, or both).

ContIacMsdcLivAlign interactive content - written and updated by engine and
app. This example: slider positions representing the
servo positions on the “Live data” - “Alignment” panel.

ContInfMsdcLivAlign informative content - written and updated by engine
only. This example: tilt angle positions on the “Live data”
- “Alignment” panel.

FeedFPupTyp feed - written and updated by engine and app ; provides
lists of indexed identifier / title / comment items. This
example: entries for a pop-up button (Pup) based on a
WhizniumSBE “type” vector .

StatAppMsdcLivAlign app state - written once by engine, updated by app. This
example: panel expanded/collapsed view state for the
“Live data” - “Alignment” panel.

StatShrMsdcScfActu shared state - written and updated by engine. This
example: among others min/max bounds for sliders on
the “System configuration” - “Actuation features” panel.

StgIlacMsdcUsrList interactive settings - written and updated by engine and
app. This example: table column widths of the “Users”
list panel.

TagMsdcLivAlign tags - written once by engine ; written in accordance

with the user’s locale/language. This example: control
captions for the “Live data” - “Alignment” panel.

Figure 15: XML data block types with examples. The respective prefix in bold.

4.2 Dispatches

Dispatches are the XML entities that are transmitted between engine and app. They may
contain a number of the XML data structured mentioned above. In addition, they carry a
unique reference of the job they originate from / are addressed to. The job reference is
passed in scrambled form, so as not to disclose details of the job tree.

Dispatches emitted by the server (main executable) are named DpchEng... whereas
dispatches emitted by the client (web browser or accessor app) are named DpchApp.... For
example, the dispatch DpchEngMsdcLivVideoLive delivers frames to the “Live data” -

16

“Video” panel and the dispatch DpchAppMsdcLivServoData is responsible for
requesting a change of servo position from the “Alignment” panel.

4.3 Dispatch collectors and long polling

While some app-engine interactions are triggered by the client (Ul / app) and warrant an
immediate response by the engine in the request-reply scheme, there are many cases in
which the server wants to communicate new information to the client on its own initiative.
This behavior is not accounted for in the HTTP/1.1 protocol (this changes with HTTP/2.0, but
HTTP/2.0 is not implemented in WhizniumSBE - yet).

Workarounds to emulate server-initiated communications include continuous polling by the
client, however this method is detrimental in terms of bandwidth usage. In WhizniumSBE,
the problem is solved by having the client emit a “notify” request which is answered by the
server only once new engine dispatches become available for transmission - else the request
times out and a new one is initiated. This method also is called long polling. A typical cycle
time for long polling is 15 seconds.

Using long polling implies the engine-internal storage of engine dispatches to be
transmitted. In web-browsers, one connection per tab or card is maintained - this is
reflected in the job tree by attaching a dispatch collector object to each card job which
collects all dispatches from down the job tree (panels, database queries, dialogs) until a new
opportunity for communication becomes available. Any generic M2M solution on the other
hand can work with a single dispatch collector which is attached to the session job rather
than to a card job.

4.4 C++ and Java API libraries

The C++ and Java API libraries are collections of XML data block and XML dispatch
serializer/deserializer objects. Source code file names and class names are the same as in the
engine.

4.5 Accessor apps

To establish meaningful workflows of apps that access a WhizniumSBE-powered tool, not
only the API library is required. Rather, in analogy to the web-browser’s Document Object
Model (DOM), some state data arriving via dispatches has to be stored and re-used client-
side, and also the HMI-like behavior of “click that button” - “wait for this reaction” - “click
the next button” - ... has to be taken into account. Whiznium helps write the corresponding
code based on a state machine that reflects the expected client workflow(s), including
platform-specific networking. The accessor app feature is available for all important C++
flavors and Java.

17

5 OPC UA Powered By Matrikon® Flex OPC UA SDK

OPC UA is a widely adopted communication standard in industrial automation. It is
employed to ensure interoperability between devices from different vendors and covers
everything from simple sensors to enterprise IT systems.

To equip a WhizniumSBE project with OPC UA server functionality, a customer has to
purchase an additional Matrikon® Flex OPC UA SDK license. WhizniumSBE uses the project
model description to generate OPC UA server source code which builds on the Matrikon®
Flex OPC UA SDK C++ API.

No OPC UA specific modelling is required, as WhizniumSBE methods and variables are
mapped 1:1 to a corresponding OPC UA address space, as illustrated in Figure 16: here,
every WhizniumSBE job becomes a folder as organizational unit. The illustration also is
evidence for a 1:1 mapping of sessions and user access rights between WhizniumSBE and
OPC UA.

3 Data Access View

OPC UA session 1 - few rights Address space T

2| No Highlight

O Root
v) Objects
v 2 JobMsdcAcqAdxl

» O alphaBeta

v O JobMsdcAcqLwir
. . . » O seqnoTGray16

OPC UA session 2 - admin rights » v setoutput

> @ start

> @ stop
v O JobMsdcActLed
4 » 2 floodSpot

fea . > P P » & setFlood
Unified Automatior UaExpert - The OPC Un| . L4 » @ setSpot
i v L JobMsdcActServo
¢ —~ L4
B4 LB lB @ % X 9% . >) thetaphi
Project @® > & Server
v [3 Project » 2 Types
v 3 Servers > 0 Views
0 test
2 test

Address Space
> No Highlight

v &
v 2 JobMsdcAcgAdxl
» O alphaBeta
v (O JobMsdcAcqLwir
» O seqnoTGray16
> @ setOutput
> @ start
> ¢ stop
v (2 JobMsdcAcqVisl
» 2 seqnoTRgbx8Gray8
» @ setFocus
» @ setOutput
> @ setTint
> @ start
> ¥ stop
v 0 JobMsdcAcqVisr

v (O JobMsdcActAlign
> @ setWave
> @ start
> @ stop

v O JobMsdcActLed
» O floodSpot
> % setFlood
» @ setSpot

v O JobMsdcActServo
> @ setPhi
» @ setTheta
> O thetaPhi

> &% Server

Y Msdcembd >> showJobs
N + RootMsdc (1)

job tree

- JobMsdcSrcMsdd/s (2)
- JobMsdcSrcTrigger/S (3)

+ M2msessMsdc (21)
+ JobMsdcAcgAdxl/s (22)
- JobMsdcSrcMsdd/S (23)
- JobMsdcSrcTrigger/S (24)
+ JobMsdcAcqLwir/S (25)
- JobMsdcSrcMsdd/S (26)
- JobMsdcSrcTrigger/S (27)
+ JobMsdcActLed/S (28)
- JobMsdcSrcMsdd/S (29)
+ JobMsdcActServo/S (30)
- JobMsdcSrcMsdd/S (31)

» L) seqnoTRgbx8Gray8 i Msde (32)

» '@ setFocus - - = - + msessMsdc

» % setOutput |t + JobMsdcAcgAdx1l/S (33)

> @ setTint - JobMsdcSrcMsdd/S (34)

» & start - JobMsdcSrcTrigger/S (35)
» @ stop + JobMsdcAcqlwir/S (36)

- JobMsdcSrcMsdd/S (37)

- JobMsdcSrcTrigger/S (38)
+ JobMsdcAcqVisl/S (39)

- JobMsdcSrcTrigger/sS (40)
+ JobMsdcAcqVisr/S (41)

- JobMsdcSrcTrigger/M (42)
+ JobMsdcActAlign/S (43)

- JobMsdcSrcMsdd/S (44)
+ JobMsdcActLed/S (45)

- JobMsdcSrcMsdd/S (46)
+ JobMsdcActServo/S (47)

- JobMsdcSrcMsdd/M (48)

Figure 16: OPC UA address space for two different sessions and their job tree counterpart.

18

6 DDS Powered By RTI® Connext™ DDS Professional Software

DDS relies on the principle of a “databus” and it is used to share time- and mission-critical
data between numerous “participants” in connected systems. DDS is not a classical client-
server architecture, and the complexity of actual transportation of data between nodes is

hidden away from the user.

To equip a WhizniumSBE project with DDS publisher functionality, a customer has to
purchase an additional RTI® Connext™ Professional license. WhizniumSBE uses the project
model description to generate IDL code that is in turn interpreted by RTI’s code generator.
Additional WhizniumSBE-generated source code establishes request/repliers for each
method and DDS publishers for each variable, both based on the RTI® Connext™ Professinal

“modern C++” API.

No DDS specific modelling is required as WhizniumSBE methods and variables are mapped
1:1 to corresponding DDS topics. Figure 17 shows the traffic on the databus the moment

Msdccmbd starts up. Currently only one WhizniumSBE session with dedicated user access
rights is launched on startup of the DDS publisher.

RTI Connext DDS Spy built with DDS version:
Copyright 2012 Real-Time Innovations,
rtiddsspy is listening for data, pres
source_ timestamp Info Src HostId
1534370378.496586 W N COA80204
1534370378.498309 W +N COA80204"
1534370378.499605 W +N COA80204"
1534370378.497619 R +N COA80204"
1534370378.498973 R +N COA80204"
1534370378.500266 R +N COA80204"
1534370378.501321 R +N COA80204"
1534370378.501923 R +N COA80204"
1534370378.500881 W +N COA80204"
1534370378.501587 W +N COA80204"
1534370378.502407 W +N COA80204"
1534370378.503025 W +N COA80204"
1534370378.503998 W +N COA80204"
1534370378.502719 R +N COA80204"
1534370378.503327 R +N COA80204"
1534370378.504812 R +N COA80204"
1534370378.505715 W +N COA80204"
1534370378.506460 R +N COA80204"
1534370378.507210 W +N COA80204"

5.3.1
Inc.

press CTRL+C to stop it.

JobMsdcAcgLwir.set
OutputReply
JobMsdcAcgLwir.sta
rtReply
JobMsdcAcgLwir.sto
pReply
JobMsdcAcglLwir.set
OutputRequest
JobMsdcAcglLwir.sta
rtRequest
JobMsdcAcgLwir.sto
pRequest
JobMsdcAcqgVisl.set
FocusRequest
JobMsdcAcgVisl.set
OutputRequest
JobMsdcAcgVisl.set
FocusReply
JobMsdcAcgVisl.set
OutputReply
JobMsdcAcgVisl.set
TintReply
JobMsdcAcgVisl.sta
rtReply
JobMsdcAcgVisl.sto
pReply
JobMsdcAcqgVisl.set
TintRequest
JobMsdcAcgVisl.sta
rtRequest
JobMsdcAcgVisl.sto
pRequest
JobMsdcAcgVisr.set
FocusReply
JobMsdcAcgVisr.set
FocusRequest
JobMsdcAcgVisr.set
OutputReply

(Core:

1.8a.00, C:

DdsJobMsdcAcgLwir:
:setOutput reply
DdsJobMsdcAcgLwir:
:start reply
DdsJobMsdcAcgLwir:
:stop_reply
DdsJobMsdcAcgLwir:
:setOutput req
DdsJobMsdcAcgLwir:
:start _req
DdsJobMsdcAcgLwir:
:stop_req
DdsJobMsdcAcgVisl:
:setFocus_req
DdsJobMsdcAcgVisl:
:setOutput req
DdsJobMsdcAcgVisl:
:setFocus reply
DdsJobMsdcAcgVisl:
:setOutput reply
DdsJobMsdcAcgVisl:
:setTint reply
DdsJobMsdcAcgVisl:
:start reply
DdsJobMsdcAcgVisl:
:stop_reply
DdsJobMsdcAcgVisl:
:setTint_reqg
DdsJobMsdcAcgVisl:
:start _req
DdsJobMsdcAcgVisl:
:stop_req
DdsJobMsdcAcgVisr:
:setFocus reply
DdsJobMsdcAcgVisr:
:setFocus_req
DdsJobMsdcAcgVisr:
:setOutput reply

1.8a.00, C++:

1.8a.00)

19

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

1534370378.

508057

508910

509663

510515

511250

511986

512490

512852

513731

513375

514084

514954

514500

515503

516085

516719

517320

517784

518239

518765

519470

519125

520219

520543

+N

+N

+N

+N

+N

+N

+N

+N

+N

+N

+N

+N

+N

+N

+N

+N

+N

+N

+N

+N

+N

+N

+N

+N

COA80204

COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"
COA80204"

COA80204

JobMsdcAcgVisr.set
OutputRequest
JobMsdcAcgVisr.set
TintReply
JobMsdcAcgVisr.set
TintRequest
JobMsdcAcgVisr.sta
rtReply
JobMsdcAcgVisr.sta
rtRequest
JobMsdcAcgVisr.sto
pReply
JobMsdcAcgVisr.sto
pRequest
JobMsdcActAlign.se
tWaveReply
JobMsdcActAlign.st
artReply
JobMsdcActAlign.se
tWaveRequest
JobMsdcActAlign.st
artRequest
JobMsdcActAlign.st
opRequest
JobMsdcActAlign.st
opReply
JobMsdcActLed. setF
loodReply
JobMsdcActLed. setF
loodRequest
JobMsdcActLed.setS
potReply
JobMsdcActLed.setS
potRequest
JobMsdcActServo.se
tPhiReply
JobMsdcActServo.se
tPhiRequest
JobMsdcActServo.se
tThetaReply
JobMsdcAcgAdxl.alp
haBeta
JobMsdcActServo.se
tThetaRequest
JobMsdcActLed. floo
dSpot
JobMsdcActServo.th
etaPhi

DdsJobMsdcAcgVisr:
:setOutput req
DdsJobMsdcAcgVisr:
:setTint reply
DdsJobMsdcAcgVisr:
:setTint_reqg
DdsJobMsdcAcgVisr:
:start reply
DdsJobMsdcAcgVisr:
:start _req
DdsJobMsdcAcgVisr:
:stop_reply
DdsJobMsdcAcgVisr:
:stop_req
DdsJobMsdcActAlign
::setWave reply
DdsJobMsdcActAlign
::start _reply
DdsJobMsdcActAlign
::setWave req
DdsJobMsdcActAlign
r:istart req
DdsJobMsdcActAlign
::stop req
DdsJobMsdcActAlign
::stop reply
DdsJobMsdcActLed: :
setFlood reply
DdsJobMsdcActLed: :
setFlood req
DdsJobMsdcActLed: :
setSpot reply
DdsJobMsdcActLed: :
setSpot req
DdsJobMsdcActServo
::setPhi reply
DdsJobMsdcActServo
::setPhi reqg
DdsJobMsdcActServo
::setTheta reply
DdsJobMsdcAcgAdxl:
ralphaBeta
DdsJobMsdcActServo
::setTheta_req
DdsJobMsdcActLed: :
floodSpot
DdsJobMsdcActServo
::thetaPhi

20

Figure 17: RTI® Connext™ DDS Spy output on Msdccmbd launch.

7 Connectivity Comparison Chart

Feature Generic OPC UA DDS
Structure card/panel/dialog M2M session M2M session
(Ul element) based mapped to OPC UA | mapped to DDS

address space

topics

Transfer protocol

HTTPS

OPC UA via TCP

DDS via UDP/TCP

Transfer content

textual/XML ; binary
data Base64
encoded

binary

binary

Access rights

card (Ul element)
based

method/variable
based

method/variable
based

Sessions

user name /
password

user name /
password, X.509
certificate

N/A ; future: RTI®
Connext™ DDS
Secure software

Variable update
(READ ONLY!)

polling, long polling

polling only ; future:

OPC UA pub/sub

DDS
publish/subscribe

Method invocation

simulated click in
web-based Ul
equivalent

OPC UA method
handler

DDS request/reply

Figure 18: Comparison of concepts and features for generic vs. OPC UA vs. DDS connectivity options.

21

Appendix A: Multi-Spectral Detector FPGA-Based Sub-System

The detector’s FPGA sub-system is implemented as a WhizniumDBE project “Multi-Spectral
Detector Device” (Msdd) in “easy” mode, implying serial/blocking communication. For
increased hardware flexibility, two functionally equivalent units are available: ZedBoard
(Zedb) - Zynq via internal AXI bus, and Basys3 (Bss3) via USB-UART bridge.

Within the host system software, the JobMsdcSrcMsdd class handles all interaction with
the FPGA sub-system. The implemented controllers along with their commands and buffer
transfers are listed in Figure 19.

adxl: accelerometer read-out (ADXL345 via SPI)
(smallint ax) = getAx()
(smallint ay) getAy ()
(smallint az) getAz ()
align: alignment laser control (MAX5385 DAC via SPI)
() = setSeqg(vblob seq)
led: high power LED control (LT3474 PWM)
() = setTonl5(utinyint tonlb)
() = setTon60 (utinyint ton60)
lwirif: LWIR camera control (Lepton3 via I2C)
() = setRng(_bool rng)
lwiracq: LWIR camera acquisition (Lepton3 wvia SPI)
<- abuflLwiracqgToHostif (38kB)
<- bbuflLwiracqgToHostif (38kB)
() = setRng(_bool rng)
(tix tixVBufstate, uint tkst, usmallint min, usmallint max) = getInfo()
servo: servo control (HS422 PWM)
() = setTheta(smallint theta)
() = setPhi(smallint phi)
state: state monitor
(tix tixVZedbState) = get ()
tkclksrc: 10kHz clock source
(uint tkst) = getTkst()
() = setTkst (uint tkst)
trigger: trigger source
setRng (_bool rng, bool btnNotTfrm)
setTdlyLwir (usmallint tdlyLwir)
setTdlyVisr (usmallint tdlyVisr)
setTfrm(usmallint Tfrm)
vgaacq: VGA camera acquisition (ucam via UART)
<- abufVgaacqToHostif (38kB)
<- bbufVgaacqToHostif (38kB)
() = setRng(_bool rng)
(tix tixVBufstate, uint tkst) = getInfol()

Figure 19: Multi-spectral Detector Device command set and available buffer transfers by controller

Link to code: https://github.com/mpsitech/MultiSpectralDetectorDevice

_mdl/msdd model files ; information to be processed by
WhizniumDBE
devmsdd C++ source files for the device access library
rls/devmsdec* shell scripts and make files to perform builds on
several platforms
msdd/bss3 VHDL source files for Basys3 (USB-UART bridge)
msdd/zedb .
and ZedBoard (AXI interconnect)

Figure 20: Project folder overview.

22

Demonstrator

ISION

MPSI Technologies Modular V

Appendix B

€4aa 49IN9ST
ZHINOOY

000TX 4enD [21u]
o3|1|eo ||

€£40Aad1 992

ZHO9Y'T

|BNP 9Z8€3 WOlY |33u]
10g4n | pJeogmouulin

¥aadi gINeTS
ZHINOO8
8V-X9HO0D INYY
0JanQ xnswnsg

24aadi 491

ZHOT'T

penb £5y-xal0) INYY
€idAuiaqdsey

€40a aNTTS
ZHINLLY

|BNP 6Y-XdH0) NYY
pleogpaz 3auny

Y31NdINOD a3aqa3igng

1dS 14vn-asn IXV IDVIYIINI
qnH gsn sy
NVYY20|g 9 00LTT VY2019 9 0067
51192 2180|3291 51199 2180 %58
Youms 10uiayi3 uqesin uodl|IS wugz uodl|IS wuge V9dd
L09THLIX L-X@UD) Xul]iX 0Z0Z£0X buAz xutjix
paeog yod4 TX) AMnasspy 21807 9|qewweiSoid buAz pieogpaz
SEIEINE NI WAENRLT| SAAT BIA Zney JZI pue |dS ein guoidal INMd Aq 3)8ue
selawed dNIZ'T [enp 198ew jewsayl uonnjosas-ysiy J98ew| |eWIBY] UOIIN|OSAI-MO| 3un ued-yn s,d31 smeis
SIIAIA - N3

g5N eIA wedayn
swesqam gH |enp

IdS BIA SBESXVIN
J13se| paJ pajejnpow p\WT

1dS el ||-wedr
elawe)d uonnjosal-mo|

INMd + 3U81INd JUeISUOD /HELT
s,a31 4amod-y3y ,09/.ST

IdS BIA SPETXAY
lajawoiajadde

SININOJINIOJ JAILDV I1dINVX3 ANI-HOIH

23

