

WhizniumSBE

Machine-to-Machine Communication in
WhizniumSBE Projects

White Paper

August 17, 2018

updated September 19, 2018

Alexander Wirthmüller
aw@mpsitech.com

MPSI Technologies GmbH

FOR INTERNAL USE

 2

1 INTRODUCTION .. 4

2 THE MULTI-SPECTRAL DETECTOR PROJECT .. 6

2.1 Tilt sensor (JobMsdcAcqAdxl) .. 6

2.2 Thermal imager (JobMsdcAcqLwir) .. 6

2.3 Visible light cameras (JobMsdcAcqVisl/Visr) ... 7

2.4 Alignment laser (JobMsdcActAlign) ... 8

2.5 High power LED’s (JobMsdcActLed) ... 8

2.6 Tilt-pan unit (JobMsdcActServo) ... 9

2.7 3D reconstruction (JobMsdcPrcStereo) .. 9

2.8 Contour tracking (JobMsdcPrcTrack) .. 9

3 WHIZNIUMSBE PROJECT ARCHITECTURE .. 10

3.1 Project components .. 10

3.2 Functionality selection .. 10

3.3 Preferences file ... 11

3.4 The job tree .. 12

3.5 Master/slave jobs ... 12

3.6 Calls and call listeners ... 13

3.7 Methods and variables ... 14

3.9 Access rights management ... 15

4 GENERIC HTTPS/XML M2M COMMUNICATION ... 16

4.1 XML data blocks ... 16

4.2 Dispatches .. 16

4.3 Dispatch collectors and long polling .. 17

4.4 C++ and Java API libraries ... 17

4.5 Accessor apps ... 17

5 OPC UA POWERED BY MATRIKON® FLEX OPC UA SDK ... 18

6 DDS POWERED BY RTI® CONNEXT™ DDS PROFESSIONAL SOFTWARE 19

 3

7 CONNECTIVITY COMPARISON CHART ... 21

APPENDIX A: MULTI-SPECTRAL DETECTOR FPGA-BASED SUB-SYSTEM 22

APPENDIX B: MPSI TECHNOLOGIES MODULAR VISION DEMONSTRATOR 23

This document is copyrighted and confidential material owned by MPSI Technologies GmbH,
Munich/Germany.

 4

1 Introduction

The Whiznium product line provides embedded software developers with innovative tools
that make use of automated code generation for the development of feature-rich
applications, e.g. in IoT, computer vision and robotics.

The Whiznium Service Builder’s Edition (SBE) targets hardware control applications that are
based on Embedded Linux powered boards such as the Raspberry Pi 3, Minnowboard Turbot
or ZedBoard. Hardware can range from sensors, cameras and servo drives to complete
FPGA-based sub-systems. Based on a fine-grained model definition, WhizniumSBE generates
C++ code for an application-specific multi-threaded main executable in build-ready fashion,
along with a SQL database, web-based user interface (UI) and numerous connectivity
options.

The range of capabilities covered by WhizniumSBE and by its sister tool for FPGA system
development, WhizniumDBE, is illustrated in Figure 1.

Figure 1: Schematic view of device level, embedded system and cloud/internet parts of a Whiznium-powered application

along with the corresponding source code features.

This document focusses on Machine-to-Machine (M2M) communication, i.e. the
connectivity options which allow WhizniumSBE-powered applications to interact with other
machines. Scenarios include, but are not limited to, the transfer of life machine health data
into the cloud, or the real-time provisioning of pre-processed vision information within a
smart robotics system.

C++ executable
main/combined engine

hardware control jobs

session management and HMI/M2M control jobs

C++ device access library (easy) C++ device access library (full)

C++ database
access library

monitoringWhizniumSBE
domain

HMI / HTTPS

M2M / HTTPS

> command prompt

database (MySQL,
PostgreSQL, SQLite)

XML
preferences

HTML/XML/JS
store (HMI)

managed file archive

temporary file store

Windows/.NET
C++/CLI acc. app

C++ API library

Linux
C++ accessor app

state m.

C++ API library

MacOS
Objective-C app

C++ API library

Web-browser
DOM

M2M / OPC UA

IIoT, e.g. SCADA

application server
thread

job processor
threads

operation processor
threads

(operation engine
server thread)

(operation engine
client threads) TCP

OPC UA

automated code generation

mixed generated/manual code

FS

FS

HTTPS

TCP to Whiznium engine
monitoring

FS

FS

CLOUD / INTERNET

EMBEDDED SYSTEM

command queue
(non-blocking)

continuous
polling

serial command
execution

WhizniumDBE
domain

PL

DEVICE LEVEL

AXI PCIe SPI UART

Xilinx Zynq Xilinx Kintex

controllershost
interface PCB1

PCB2 PCB3

SPISPI

DOM

DOM

DOM

state m.

state m.

controllershost
interface

JVM
Java accessor app

Java API library

DOM state m.
e.g. UXV

DDS

M2M / DDS
powered bypowered by

Connext™ DDS
Software

 5

M2M communication for WhizniumSBE can be subdivided into two categories: on one hand
there is the exchange of generic XML data blocks via HTTPS which closely follows the web-
based UI or Human-Machine-Interface (HMI). To simplify the process of developing client-
side applications, WhizniumSBE provides project-specific C++ and Java API libraries, along
with supporting code generation for C++/CLI/Objective-C and Java.

On top of the generic option, the developer can choose to embed an industry-standard OPC
UA server and/or a DDS publisher. The OPC UA server functionality is provided by means of
the Matrikon® Flex OPC UA SDK, whereas RTI® Connext™ DDS Professional Software is used
to ensure standard-compliant DDS connectivity. OPC UA and DDS bypass the structure given
by the HMI and rather provide low-level access to hardware-related methods and variables.

Both M2M communication categories have in common that detailed access rights can be
attributed to various user roles.

In the following chapters, the Multi-Spectral Detector will be introduced as an example for a
complex WhizniumSBE-powered project. Its features and source code will then be used to
shine a light on the mechanisms that make M2M communication in WhizniumSBE projects
work. The document concludes with a comparison chart for generic vs. OPC UA vs. DDS
connectivity.

 6

2 The Multi-Spectral Detector Project

The embedded system used to describe M2M communication is one variant of MPSI
Technologies’ modular vision demonstrator. This demonstrator, conceived to highlight the
full breadth of Whiznium’s capabilities, can be re-configured e.g. to include low-cost USB vs.
high-end GigE cameras. Also the embedded hardware can be re-arranged from an all-
programmable Xilinx Zynq SoC (ARM cores and FPGA hard-wired in the same package) to
separate high-performance Intel Atom quad-core and Xilinx Kintex7 FPGA boards.

The actual configuration chosen here is depicted in Figure 2.

Figure 2: picture of the vision demonstrator.

In the following sub-chapters, a brief description of each relevant hardware handling /
processing feature is given ; the job identifiers (see chapter 3.2) in parentheses denote the
C++ class which is responsible for handling the respective feature.

2.1 Tilt sensor (JobMsdcAcqAdxl)

The tilt sensor is an Analog Devices ADXL345 3-axis accelerometer which is surface-mounted
onto the detector’s mainboard. Its readout via SPI is handled in the FPGA sub-system. The
sensor serves as the digital equivalent of a water bubble.

2.2 Thermal imager (JobMsdcAcqLwir)

A FLIR Lepton3 thermal imaging core based on microbolometer technology for long-wave
infrared (LWIR) light is used to obtain 120 x 160 pixel thermal images at a rate of 9Hz.
Control and readout is accomplished via I2C and SPI interfaces, respectively. Both

 7

functionalities are implemented in the FPGA sub-system, including on-FPGA buffering and
streaming of frames.

An exemplary scene is shown in Figure 3.

Figure 3: The same scene as LWIR image (left) and as visible light image (right). The most prominent feature in the infrared
is the hand due to its thermal signature, whereas the brightest feature in the visible range is the red alignment laser spot.

2.3 Visible light cameras (JobMsdcAcqVisl/Visr)

Machine vision is enabled by dual FLIR BlackFly Gigabit Ethernet cameras which provide
1280 x 960 pixel RGB images at frame rates of up to 52fps. FPGA-generated trigger signals
allow for the time-synchronous acquisition from the left (VIS-L) and right (VIS-R) cameras.

The screenshot in Figure 4 shows two simultaneous web-based UI sessions, streaming from
VIS-L and VIS-R, respectively.

Figure 4: VIS-L and VIS-R views of the same scene.

 8

2.4 Alignment laser (JobMsdcActAlign)

The system features a red 635nm alignment laser (eye-safe, sub 1mW class), the optical
output of which can be modulated continuously with an analog input signal. This signal is
generated by a Maxim MAX5711 DAC which in turn is controlled from the FPGA sub-system
via SPI.

The laser provides a visual feature with unique fingerprint to be detected by the VIS-L/R
cameras. To this end, laser modulation is synchronized with the VIS-L/R hardware trigger
signals, resulting in the exemplary time-series shown in Figure 5.

frame 0 (t=0)

frame 1 (t=250ms)

frame 2 (t=500ms)

frame 3 (t=750ms)

frame 4 (t=1s)

frame 5 (t=1.25s)

frame 6 (t=1.5s)

frame 7 (t=1.75s)

frame 8 (t=2s)

frame 9 (t=2.25s)

frame 10 (t=2.5s)

frame 11 (t=2.75s)

frame 12 (t=3s)

frame 13 (t=3.25s)

frame 14 (t=3.5s)

frame 15 (t=3.75s)

Figure 5: Time series of the VIS-L camera synchronized to the alignment laser running a sinusoidal sequence with a period
of 4s. Peak intensity at t=500ms.

2.5 High power LED’s (JobMsdcActLed)

A spotlight (2x 15° opening angle) and a floodlight (2x 60° opening angle) are driven by each
one Linear LT3474 step-down converter in constant-current mode. The apparent light
intensity is regulated with 100Hz PWM signals (1% to 100% duty-cycle) which are generated
by the FPGA.

The corresponding web-based UI controls are shown in Figure 6.

 9

Figure 6: Web-based UI panel for controlling the LED intensity for a German-speaking user.

2.6 Tilt-pan unit (JobMsdcActServo)

For advanced functionality such as feature tracking, the alignment laser can be rotated
around two axes. The hardware implementation uses two standard RC servos which use a
FPGA-generated PWM signal to set their respective angles.

Figure 7 shows the web-based UI for manual control of this feature.

Figure 7: Web-based UI panel for manually controlling the tilt-pan unit. The tilt angle read-out is visible as well.

2.7 3D reconstruction (JobMsdcPrcStereo)

WhizniumSBE applications are multi-threaded and well-suited for running multiple
concurrent tasks. Event-driven activation of certain (post-)processing jobs, in this case the
combination of time-synchronous VIS-L and VIS-R frames to a depth map as they become
available, can be modelled in detail, resulting in robust, powerful source code.

The stereo vision feature / generation of a depth map is currently under revision. It makes
use of standard algorithms provided by the OpenCV framework.

2.8 Contour tracking (JobMsdcPrcTrack)

Another planned feature is the recognition of a “same-color” shape within the view of the
VIS-L camera which is subsequently tracked by the red alignment laser. This feature implies
combining JobMsdcAcqVisl, JobMsdcActAlign and JobMsdcActServo into a
closed feedback loop.

 10

3 WhizniumSBE Project Architecture

3.1 Project components

The development process with WhizniumSBE results in the compile-/ deploy-ready source
code components which are highlighted in bold in Figure 8. The naming conventions of
WhizniumSBE require a 4-letter abbreviation for each project, Msdc was chosen for the
detector project.

_mdl/msdc model files ; information to be processed by
WhizniumSBE

msdccmbd C++ source files for main executable (“combined
engine”) ; auto-generated with manual insertion
points

msdccmbd/Msdccmbd_exe.cpp command line and entry point int main()
msdccmbd/MsdccmbdAppsrv.cpp HTTPS server for generic communication
msdccmbd/MsdccmbdDdspub.cpp DDS publisher
msdccmbd/MsdccmbdUasrv.cpp OPC UA server
_ini/msdc IDL input file for RTI® Connext™ DDS Code

Generator
rls/dbsmsdc*
rls/msdccmbd*

shell scripts and make files to perform builds on
several platforms

webappmsdc JS/HTML/XML files for the web-based UI ; auto-
generated with manual insertion points

_ini/dbsmsdc
ini/msdccmbd*
_ini/msdccmbd

SQL script to establish the SQLite database,
platform-specific preferences file, XML file to
populate the SQLite database (initial fill)

apimsdc C++ source files for the API library
dbsmsdc C++ source files for database access (by table /

vector)
japimsdc Java source files for the API library

Figure 8: Project folder overview, by order in which components are needed.

All further discussion is related to the main/combined engine code, to be found in the
msdccmbd folder.

Link to code: https://github.com/mpsitech/MultiSpectralDetectorControl

3.2 Functionality selection

WhizniumSBE model specification is done using eight text-based model files in total, each
representing one aspect of the model, e.g. database, user interface or deployment.
Connectivity options to be implemented in code on the other hand are part of each project
version’s standard functionality selection, as shown in Figure 9.

 11

Figure 9: Msdc version 0.1.45 overview including DDS publisher and OPC UA server selected as standard functionality.

3.3 Preferences file

Complex embedded systems come with a great deal of parameters ; in WhizniumSBE, these
can be attributed to specific hardware control functionality and their corresponding C++
classes (jobs). The auto-generated code takes care of automatically loading and storing all
settings using a common XML preferences file.

WhizniumSBE’s auto-generation feature for web-based UI’s makes it particularly simple to
establish a human-readable and -writable interface to settings data. For Msdc, this is
illustrated in Figure 10.

 12

Figure 10: XML preferences file (left) along with web-based UI for job-specific settings (right).

3.4 The job tree

At run-time, each WhizniumSBE-powered project stores session state data in a hierarchical
structure of objects, the job tree. In terms of code, each super-job #include’s its
respective sub-jobs. A single root job RootMsdc manages the establishment of HMI and
M2M session jobs, while the HMI/M2M session jobs SessMsdc and M2msessMsdc
provide their sub-jobs with information about feature access rights.

All further jobs are either responsible for UI elements (cards - CrdMsdc…, panels -
PnlMsdc…, database queries - QryMsdc… and dialogs - DlgMsdc…) or for hardware
control (JobMsdcAcq…/Act…/Src…).

3.5 Master/slave jobs

In embedded systems, it is crucial that at any given time only one programmatical element,
in this case a job, is in control of a specific hardware feature. For instance, it is not desirable
to have the tracking algorithm JobMsdcPrcTrack trying to position the alignment laser
spot (via JobMsdcActServo), while simultaneously a human operator is providing
conflicting input via the web-based UI. Sensor data on the other hand may have multiple

 13

recipients - a good example is the VIS-L acquisition job JobMsdcAcqVisl: image data can
be provided to several HMI and M2M sessions for external processing, while Msdc-
internally, VIS-L images are processed by the stereo (JobMsdcPrcStereo) and contour
tracking (JobMsdcPrcTrack) algorithms.

WhizniumSBE provides the option to equip a job with master/slave functionality. This
feature ensures non-conflicting control and multi-party access of hardware. Mutex-
protected and seamless transitions of a classes’ master control from one object to another is
implemented within the auto-generated source code fabric. Master/slave jobs share
common (in C++, static) data and application-internal calls (see below) ensure that
updates by the master job are passed on to all respective slave jobs of the same class.

3.6 Calls and call listeners

Jobs within the job tree can communicate with one another by triggering and listening to
calls. Calls may carry a limited amount of data as invocation and return arguments. A central
feature in each WhizniumSBE-powered application ensures the matching of triggered calls to
registered call listeners.

For example, the web-based UI’s navigation card job CrdMsdcNav triggers a number of
CallMsdcCrdActive calls to find out which navigation targets (cards) to show to / hide
from the user. Based on user group/user access rights, these calls are answered by the
session job SessMsdc up the job tree hierarchy with a view/edit/execute return argument.

Once the user chooses a navigation target to open as a new web-browser tab, e.g. a new
“System configuration” card, CrdMsdcNav triggers a CallMsdcCrdOpen call to which
again SessMsdc would reply with the new card job’s reference, once the corresponding
card job CrdMsdcScf is established successfully. Both call scenarios are highlighted in the
job tree shown in Figure 11.

+ RootMsdc (1)
 ...
 + SessMsdc (21)
 CallMsdcCrdActive (tree)
 CallMsdcCrdClose (tree)
 CallMsdcCrdOpen (tree)
 CallMsdcLog (tree)
 CallMsdcRecaccess (tree)
 CallMsdcRefPreSet (tree)
 + CrdMsdcNav (22, dcol)
 CallMsdcDlgClose (imm)
 - PnlMsdcNavHeadbar (23)
 - PnlMsdcNavPre (24)
 - PnlMsdcNavAdmin (25)
 CallMsdcHusrRunvMod.crdUsrEq (all)
 - PnlMsdcNavOpr (26)
 CallMsdcHusrRunvMod.crdUsrEq (all)
 + CrdMsdcScf (27, dcol)
 CallMsdcDlgClose (imm)
 + PnlMsdcScfSource (28)
 ...
 + PnlMsdcScfAcquis (31)
 CallMsdcMastslvChg (imm)
 + JobMsdcAcqAdxl/M (32)
 ...
 - JobMsdcSrcMsdd/S (33)
 ...
 - JobMsdcSrcTrigger/S (34)
 ...

 14

 + JobMsdcAcqLwir/M (35)
 ...
 - JobMsdcSrcMsdd/S (36)
 ...
 - JobMsdcSrcTrigger/S (37)
 ...
 + JobMsdcAcqVisl/S (38)
 ...
 - JobMsdcSrcTrigger/S (39)
 ...
 + JobMsdcAcqVisr/S (40)
 ...
 - JobMsdcSrcTrigger/S (41)
 ...
 + PnlMsdcScfActu (42)
 ...
 - PnlMsdcScfHeadbar (67)

Figure 11: Partial job tree for a HMI session with navigation card and system configuration card opened. Call listeners in
gray.

Calls are also used to notify the OPC UA server and DDS publisher of updated job variables.

3.7 Methods and variables

Hardware control jobs are shielded from external users in the web-based UI / generic
connectivity scenario where all access is handled via UI jobs higher up the job tree, and XML
data blocks are employed for HTTPS communication. However, M2M sessions used for OPC
UA and DDS allow low-level access to all methods and variables specified in the specified in
the application model.

The set of Msdc methods, along with their invocation and return parameters is listed in
Figure 12 ; the set of variables is listed in Figure 13. For the latter, both shared and instance-
specific data can be made visible to the outside.

JobMsdcAcqLwir:
 (boolean success) = setOutput(vecsref ixMsdcVSqrgrp)
 (boolean success) = start()
 (boolean success) = stop()
JobMsdcAcqVisl:
 (boolean success) = setFocus(float focus)
 (boolean success) = setOutput(vecsref ixMsdcVCamres, vecsref ixMsdcVSqrgrp,
 boolean grayscale)
 (boolean success) = setTint(float Tint)
 (boolean success) = start()
 (boolean success) = stop()
JobMsdcAcqVisr:
 (boolean success) = setFocus(float focus)
 (boolean success) = setOutput(vecsref ixMsdcVCamres, vecsref ixMsdcVSqrgrp,
 boolean grayscale)
 (boolean success) = setTint(float Tint)
 (boolean success) = start()
 (boolean success) = stop()
JobMsdcActAlign:
 (boolean success) = setWave(vecsref ixVFunction, utinyint N, floatvec seq)
 (boolean success) = start()
 (boolean success) = stop()
JobMsdcActLed:
 (boolean success) = setFlood(float flood)
 (boolean success) = setSpot(float spot)
JobMsdcActServo:
 (boolean success) = setPhi(float phi)
 (boolean success) = setTheta(float theta)

Figure 12: Multi-Spectral Detector Control methods by job.

 15

JobMsdcAcqAdxl:
 {float alpha, float beta}
JobMsdcAcqLwir:
 {uint seqno, double t, usmallintvec gray16}
JobMsdcAcqVisl:
 {uint seqno, double t, utinyintvec rgbx8, utinyintvec gray8}
JobMsdcAcqVisr:
 {uint seqno, double t, utinyintvec rgbx8, utinyintvec gray8}
JobMsdcActLed:
 {float flood, float spot}
JobMsdcActServo:
 {float theta, float phi}

Figure 13: Multi-Spectral Detector Control variables by job.

3.9 Access rights management

Regardless of the connectivity option chosen, no access to WhizniumSBE-powered
applications is provided to outside stakeholders without first establishing a session. Sessions
are opened either using a username/password combination or a known X.509 certificate.
The auto-generated database holds information about user groups and users, along with
dedicated feature access rights at arbitrary granularity.

Features for web-based HMI and generic M2M sessions comprise all cards, whereas OPC UA
and DDS M2M sessions use methods and variables as features for which credentials can be
administered. Examples are shown in Figure 14.

Figure 14: Definition of card (HMI) access rights by user group on top, definition of job method/variable (M2M) access

rights for a specific user below.

 16

4 Generic HTTPS/XML M2M Communication

All connectivity options that are based on the HMI or web-based user interface (UI) rely on
exchanging the same type of XML blocks that a web browser would use in POST requests via
HTTP/1.1. No direct hardware control job access is possible, as only root, session, card, panel
and dialog jobs exchange dispatches (see 4.2).

4.1 XML data blocks

All data blocks fall into exactly one category of those listed in Figure 15.
Serializers/deserializers from/to C++ objects are auto-generated by WhizniumSBE in
accordance with the “direction of travel” (engine-app, app-engine, or both).

ContIacMsdcLivAlign interactive content - written and updated by engine and

app. This example: slider positions representing the
servo positions on the “Live data” - “Alignment” panel.

ContInfMsdcLivAlign informative content - written and updated by engine
only. This example: tilt angle positions on the “Live data”
- “Alignment” panel.

FeedFPupTyp feed - written and updated by engine and app ; provides
lists of indexed identifier / title / comment items. This
example: entries for a pop-up button (Pup) based on a
WhizniumSBE “type” vector .

StatAppMsdcLivAlign app state - written once by engine, updated by app. This
example: panel expanded/collapsed view state for the
“Live data” - “Alignment” panel.

StatShrMsdcScfActu shared state - written and updated by engine. This
example: among others min/max bounds for sliders on
the “System configuration” - “Actuation features” panel.

StgIacMsdcUsrList interactive settings - written and updated by engine and
app. This example: table column widths of the “Users”
list panel.

TagMsdcLivAlign tags - written once by engine ; written in accordance
with the user’s locale/language. This example: control
captions for the “Live data” - “Alignment” panel.

Figure 15: XML data block types with examples. The respective prefix in bold.

4.2 Dispatches

Dispatches are the XML entities that are transmitted between engine and app. They may
contain a number of the XML data structured mentioned above. In addition, they carry a
unique reference of the job they originate from / are addressed to. The job reference is
passed in scrambled form, so as not to disclose details of the job tree.

Dispatches emitted by the server (main executable) are named DpchEng… whereas
dispatches emitted by the client (web browser or accessor app) are named DpchApp…. For
example, the dispatch DpchEngMsdcLivVideoLive delivers frames to the “Live data” -

 17

“Video” panel and the dispatch DpchAppMsdcLivServoData is responsible for
requesting a change of servo position from the “Alignment” panel.

4.3 Dispatch collectors and long polling

While some app-engine interactions are triggered by the client (UI / app) and warrant an
immediate response by the engine in the request-reply scheme, there are many cases in
which the server wants to communicate new information to the client on its own initiative.
This behavior is not accounted for in the HTTP/1.1 protocol (this changes with HTTP/2.0, but
HTTP/2.0 is not implemented in WhizniumSBE - yet).

Workarounds to emulate server-initiated communications include continuous polling by the
client, however this method is detrimental in terms of bandwidth usage. In WhizniumSBE,
the problem is solved by having the client emit a “notify” request which is answered by the
server only once new engine dispatches become available for transmission - else the request
times out and a new one is initiated. This method also is called long polling. A typical cycle
time for long polling is 15 seconds.

Using long polling implies the engine-internal storage of engine dispatches to be
transmitted. In web-browsers, one connection per tab or card is maintained - this is
reflected in the job tree by attaching a dispatch collector object to each card job which
collects all dispatches from down the job tree (panels, database queries, dialogs) until a new
opportunity for communication becomes available. Any generic M2M solution on the other
hand can work with a single dispatch collector which is attached to the session job rather
than to a card job.

4.4 C++ and Java API libraries

The C++ and Java API libraries are collections of XML data block and XML dispatch
serializer/deserializer objects. Source code file names and class names are the same as in the
engine.

4.5 Accessor apps

To establish meaningful workflows of apps that access a WhizniumSBE-powered tool, not
only the API library is required. Rather, in analogy to the web-browser’s Document Object
Model (DOM), some state data arriving via dispatches has to be stored and re-used client-
side, and also the HMI-like behavior of “click that button” - “wait for this reaction” - “click
the next button” - … has to be taken into account. Whiznium helps write the corresponding
code based on a state machine that reflects the expected client workflow(s), including
platform-specific networking. The accessor app feature is available for all important C++
flavors and Java.

 18

5 OPC UA Powered By Matrikon® Flex OPC UA SDK

OPC UA is a widely adopted communication standard in industrial automation. It is
employed to ensure interoperability between devices from different vendors and covers
everything from simple sensors to enterprise IT systems.

To equip a WhizniumSBE project with OPC UA server functionality, a customer has to
purchase an additional Matrikon® Flex OPC UA SDK license. WhizniumSBE uses the project
model description to generate OPC UA server source code which builds on the Matrikon®
Flex OPC UA SDK C++ API.

No OPC UA specific modelling is required, as WhizniumSBE methods and variables are
mapped 1:1 to a corresponding OPC UA address space, as illustrated in Figure 16: here,
every WhizniumSBE job becomes a folder as organizational unit. The illustration also is
evidence for a 1:1 mapping of sessions and user access rights between WhizniumSBE and
OPC UA.

Figure 16: OPC UA address space for two different sessions and their job tree counterpart.

 19

6 DDS Powered By RTI® Connext™ DDS Professional Software

DDS relies on the principle of a “databus” and it is used to share time- and mission-critical
data between numerous “participants” in connected systems. DDS is not a classical client-
server architecture, and the complexity of actual transportation of data between nodes is
hidden away from the user.

To equip a WhizniumSBE project with DDS publisher functionality, a customer has to
purchase an additional RTI® Connext™ Professional license. WhizniumSBE uses the project
model description to generate IDL code that is in turn interpreted by RTI’s code generator.
Additional WhizniumSBE-generated source code establishes request/repliers for each
method and DDS publishers for each variable, both based on the RTI® Connext™ Professinal
“modern C++” API.

No DDS specific modelling is required as WhizniumSBE methods and variables are mapped
1:1 to corresponding DDS topics. Figure 17 shows the traffic on the databus the moment
Msdccmbd starts up. Currently only one WhizniumSBE session with dedicated user access
rights is launched on startup of the DDS publisher.

RTI Connext DDS Spy built with DDS version: 5.3.1 (Core: 1.8a.00, C: 1.8a.00, C++: 1.8a.00)
Copyright 2012 Real-Time Innovations, Inc.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
rtiddsspy is listening for data, press CTRL+C to stop it. 
 
source_timestamp   Info  Src HostId  topic               type               
-----------------  ----  ----------  ------------------  ------------------   
1534370378.496586  W +N  C0A80204    JobMsdcAcqLwir.set  DdsJobMsdcAcqLwir: 
                                ...  OutputReply         :setOutput_reply   
1534370378.498309  W +N  C0A80204    JobMsdcAcqLwir.sta  DdsJobMsdcAcqLwir: 
                                ...  rtReply             :start_reply       
1534370378.499605  W +N  C0A80204    JobMsdcAcqLwir.sto  DdsJobMsdcAcqLwir: 
                                ...  pReply              :stop_reply        
1534370378.497619  R +N  C0A80204    JobMsdcAcqLwir.set  DdsJobMsdcAcqLwir: 
                                ...  OutputRequest       :setOutput_req     
1534370378.498973  R +N  C0A80204    JobMsdcAcqLwir.sta  DdsJobMsdcAcqLwir: 
                                ...  rtRequest           :start_req         
1534370378.500266  R +N  C0A80204    JobMsdcAcqLwir.sto  DdsJobMsdcAcqLwir: 
                                ...  pRequest            :stop_req          
1534370378.501321  R +N  C0A80204    JobMsdcAcqVisl.set  DdsJobMsdcAcqVisl: 
                                ...  FocusRequest        :setFocus_req      
1534370378.501923  R +N  C0A80204    JobMsdcAcqVisl.set  DdsJobMsdcAcqVisl: 
                                ...  OutputRequest       :setOutput_req     
1534370378.500881  W +N  C0A80204    JobMsdcAcqVisl.set  DdsJobMsdcAcqVisl: 
                                ...  FocusReply          :setFocus_reply    
1534370378.501587  W +N  C0A80204    JobMsdcAcqVisl.set  DdsJobMsdcAcqVisl: 
                                ...  OutputReply         :setOutput_reply   
1534370378.502407  W +N  C0A80204    JobMsdcAcqVisl.set  DdsJobMsdcAcqVisl: 
                                ...  TintReply           :setTint_reply     
1534370378.503025  W +N  C0A80204    JobMsdcAcqVisl.sta  DdsJobMsdcAcqVisl: 
                                ...  rtReply             :start_reply       
1534370378.503998  W +N  C0A80204    JobMsdcAcqVisl.sto  DdsJobMsdcAcqVisl: 
                                ...  pReply              :stop_reply        
1534370378.502719  R +N  C0A80204    JobMsdcAcqVisl.set  DdsJobMsdcAcqVisl: 
                                ...  TintRequest         :setTint_req       
1534370378.503327  R +N  C0A80204    JobMsdcAcqVisl.sta  DdsJobMsdcAcqVisl: 
                                ...  rtRequest           :start_req         
1534370378.504812  R +N  C0A80204    JobMsdcAcqVisl.sto  DdsJobMsdcAcqVisl: 
                                ...  pRequest            :stop_req          
1534370378.505715  W +N  C0A80204    JobMsdcAcqVisr.set  DdsJobMsdcAcqVisr: 
                                ...  FocusReply          :setFocus_reply    
1534370378.506460  R +N  C0A80204    JobMsdcAcqVisr.set  DdsJobMsdcAcqVisr: 
                                ...  FocusRequest        :setFocus_req      
1534370378.507210  W +N  C0A80204    JobMsdcAcqVisr.set  DdsJobMsdcAcqVisr: 
                                ...  OutputReply         :setOutput_reply   



 20 

1534370378.508057  R +N  C0A80204    JobMsdcAcqVisr.set  DdsJobMsdcAcqVisr: 
                                ...  OutputRequest       :setOutput_req     
1534370378.508910  W +N  C0A80204    JobMsdcAcqVisr.set  DdsJobMsdcAcqVisr: 
                                ...  TintReply           :setTint_reply     
1534370378.509663  R +N  C0A80204    JobMsdcAcqVisr.set  DdsJobMsdcAcqVisr: 
                                ...  TintRequest         :setTint_req       
1534370378.510515  W +N  C0A80204    JobMsdcAcqVisr.sta  DdsJobMsdcAcqVisr: 
                                ...  rtReply             :start_reply       
1534370378.511250  R +N  C0A80204    JobMsdcAcqVisr.sta  DdsJobMsdcAcqVisr: 
                                ...  rtRequest           :start_req         
1534370378.511986  W +N  C0A80204    JobMsdcAcqVisr.sto  DdsJobMsdcAcqVisr: 
                                ...  pReply              :stop_reply        
1534370378.512490  R +N  C0A80204    JobMsdcAcqVisr.sto  DdsJobMsdcAcqVisr: 
                                ...  pRequest            :stop_req          
1534370378.512852  W +N  C0A80204    JobMsdcActAlign.se  DdsJobMsdcActAlign 
                                ...  tWaveReply          ::setWave_reply    
1534370378.513731  W +N  C0A80204    JobMsdcActAlign.st  DdsJobMsdcActAlign 
                                ...  artReply            ::start_reply      
1534370378.513375  R +N  C0A80204    JobMsdcActAlign.se  DdsJobMsdcActAlign 
                                ...  tWaveRequest        ::setWave_req      
1534370378.514084  R +N  C0A80204    JobMsdcActAlign.st  DdsJobMsdcActAlign 
                                ...  artRequest          ::start_req        
1534370378.514954  R +N  C0A80204    JobMsdcActAlign.st  DdsJobMsdcActAlign 
                                ...  opRequest           ::stop_req         
1534370378.514500  W +N  C0A80204    JobMsdcActAlign.st  DdsJobMsdcActAlign 
                                ...  opReply             ::stop_reply       
1534370378.515503  W +N  C0A80204    JobMsdcActLed.setF  DdsJobMsdcActLed:: 
                                ...  loodReply           setFlood_reply     
1534370378.516085  R +N  C0A80204    JobMsdcActLed.setF  DdsJobMsdcActLed:: 
                                ...  loodRequest         setFlood_req       
1534370378.516719  W +N  C0A80204    JobMsdcActLed.setS  DdsJobMsdcActLed:: 
                                ...  potReply            setSpot_reply      
1534370378.517320  R +N  C0A80204    JobMsdcActLed.setS  DdsJobMsdcActLed:: 
                                ...  potRequest          setSpot_req        
1534370378.517784  W +N  C0A80204    JobMsdcActServo.se  DdsJobMsdcActServo 
                                ...  tPhiReply           ::setPhi_reply     
1534370378.518239  R +N  C0A80204    JobMsdcActServo.se  DdsJobMsdcActServo 
                                ...  tPhiRequest         ::setPhi_req       
1534370378.518765  W +N  C0A80204    JobMsdcActServo.se  DdsJobMsdcActServo 
                                ...  tThetaReply         ::setTheta_reply   
1534370378.519470  W +N  C0A80204    JobMsdcAcqAdxl.alp  DdsJobMsdcAcqAdxl: 
                                ...  haBeta              :alphaBeta         
1534370378.519125  R +N  C0A80204    JobMsdcActServo.se  DdsJobMsdcActServo 
                                ...  tThetaRequest       ::setTheta_req     
1534370378.520219  W +N  C0A80204    JobMsdcActLed.floo  DdsJobMsdcActLed:: 
                                ...  dSpot               floodSpot          
1534370378.520543  W +N  C0A80204    JobMsdcActServo.th  DdsJobMsdcActServo 
                                ...  etaPhi              ::thetaPhi         

Figure 17: RTI® Connext™ DDS Spy output on Msdccmbd launch. 

 
  



 21 

7 Connectivity Comparison Chart 
 

Feature Generic OPC UA DDS 
Structure card/panel/dialog 

(UI element) based 
M2M session 
mapped to OPC UA 
address space 

M2M session 
mapped to DDS 
topics 

Transfer protocol HTTPS OPC UA via TCP DDS via UDP/TCP 
Transfer content textual/XML ; binary 

data Base64 
encoded 

binary binary 

Access rights card (UI element) 
based 

method/variable 
based  

method/variable 
based 

Sessions user name / 
password 

user name / 
password, X.509 
certificate 

N/A ; future: RTI® 
Connext™ DDS 
Secure software 

Variable update 
(READ ONLY!) 

polling, long polling polling only ; future: 
OPC UA pub/sub 

DDS 
publish/subscribe 

Method invocation simulated click in 
web-based UI 
equivalent 

OPC UA method 
handler 

DDS request/reply 

Figure 18: Comparison of concepts and features for generic vs. OPC UA vs. DDS connectivity options.  



 22 

Appendix A: Multi-Spectral Detector FPGA-Based Sub-System 
 
The detector’s FPGA sub-system is implemented as a WhizniumDBE project “Multi-Spectral 
Detector Device” (Msdd) in “easy” mode, implying serial/blocking communication. For 
increased hardware flexibility, two functionally equivalent units are available: ZedBoard 
(Zedb) - Zynq via internal AXI bus, and Basys3 (Bss3) via USB-UART bridge. 
 
Within the host system software, the JobMsdcSrcMsdd class handles all interaction with 
the FPGA sub-system. The implemented controllers along with their commands and buffer 
transfers are listed in Figure 19. 
 

adxl: accelerometer read-out (ADXL345 via SPI) 
 (smallint ax) = getAx() 
 (smallint ay) = getAy() 
 (smallint az) = getAz() 
align: alignment laser control (MAX5385 DAC via SPI) 
 () = setSeq(vblob seq) 
led: high power LED control (LT3474 PWM) 
 () = setTon15(utinyint ton15) 
 () = setTon60(utinyint ton60) 
lwirif: LWIR camera control (Lepton3 via I2C) 
 () = setRng(_bool rng) 
lwiracq: LWIR camera acquisition (Lepton3 via SPI) 
 <- abufLwiracqToHostif (38kB) 
 <- bbufLwiracqToHostif (38kB) 
 () = setRng(_bool rng) 
 (tix tixVBufstate, uint tkst, usmallint min, usmallint max) = getInfo() 
servo: servo control (HS422 PWM) 
 () = setTheta(smallint theta) 
 () = setPhi(smallint phi) 
state: state monitor 
 (tix tixVZedbState) = get() 
tkclksrc: 10kHz clock source 
 (uint tkst) = getTkst() 
 () = setTkst(uint tkst) 
trigger: trigger source 
 () = setRng(_bool rng, _bool btnNotTfrm) 
 () = setTdlyLwir(usmallint tdlyLwir) 
 () = setTdlyVisr(usmallint tdlyVisr) 
 () = setTfrm(usmallint Tfrm) 
vgaacq: VGA camera acquisition (ucam via UART) 
 <- abufVgaacqToHostif (38kB) 
 <- bbufVgaacqToHostif (38kB) 
 () = setRng(_bool rng) 
 (tix tixVBufstate, uint tkst) = getInfo() 
 

Figure 19: Multi-spectral Detector Device command set and available buffer transfers by controller 

 
Link to code: https://github.com/mpsitech/MultiSpectralDetectorDevice 
 

_mdl/msdd model files ; information to be processed by 
WhizniumDBE 

devmsdd C++ source files for the device access library 
_rls/devmsdc_* shell scripts and make files to perform builds on 

several platforms 
msdd/bss3 
msdd/zedb 

VHDL source files for Basys3 (USB-UART bridge) 
and ZedBoard (AXI interconnect) 

Figure 20: Project folder overview. 

 
  



 23 

Appendix B: MPSI Technologies Modular Vision Demonstrator 
 

 

H
IG

H
-E

N
D

 E
X

A
M

PL
E 

A
CT

IV
E 

CO
M

PO
N

EN
TS

ac
ce

le
ro

m
et

er
15

°/
60

° 
hi

gh
-p

ow
er

 L
ED

's
lo

w
-r

es
ol

ut
io

n 
ca

m
er

a
1m

W
 m

od
ul

at
ed

 r
ed

 la
se

r
du

al
 H

D
 w

eb
ca

m
s

A
D

XL
34

5 
vi

a 
SP

I
LT

34
74

 c
on

st
an

t 
cu

rr
en

t 
+ 

PW
M

µ
Ca

m
-I

II 
vi

a 
SP

I
M

A
X5

38
5 

vi
a 

SP
I

Li
fe

Ca
m

 v
ia

 U
SB

EN
D

 -
 D

EV
IC

ES
st

at
us

 L
ED

's
ti

lt
-p

an
 u

ni
t

lo
w

-r
es

ol
ut

io
n 

th
er

m
al

 im
ag

er
hi

gh
-r

es
ol

ut
io

n 
th

er
m

al
 im

ag
er

du
al

 1
.2

M
P 

ca
m

er
as

an
gl

e 
by

 P
W

M
Le

pt
on

3 
vi

a 
SP

I a
nd

 I2
C

Ta
u2

 v
ia

 L
V

D
S

B
la

ck
Fl

y 
vi

a 
Et

he
rn

et

Ze
dB

oa
rd

 Z
yn

q 
Pr

og
ra

m
m

ab
le

 L
og

ic
M

er
cu

ry
 K

X
1 

FP
G

A
 B

oa
rd

Xi
lin

x 
Zy

nq
 X

C7
Z0

20
Xi

lin
x 

Ki
nt

ex
-7

 X
C7

K1
60

T
FP

G
A

28
nm

 S
ili

co
n

28
nm

 S
ili

co
n

G
ig

ab
it

 E
th

er
ne

t 
Sw

it
ch

85
k 

lo
gi

c 
ce

lls
16

2k
 lo

gi
c 

ce
lls

49
00

 K
b 

B
lo

ck
R

A
M

11
70

0 
Kb

 B
lo

ck
R

A
M

A
ct

iv
e 

U
SB

 H
ub

IN
TE

R
FA

CE
A

X
I

U
SB

-U
A

R
T

PC
Ie

SP
I

A
vn

et
 Z

ed
B

oa
rd

R
as

pb
er

ry
Pi

3
gu

m
st

ix
 O

ve
ro

M
in

no
w

bo
ar

d 
Tu

rb
ot

In
te

l G
al

ile
o

EM
B

ED
D

ED
 C

O
M

PU
TE

R
A

R
M

 C
or

te
x-

A
9 

du
al

A
R

M
 C

or
te

x-
A

53
 q

ua
d

A
R

M
 C

or
te

x-
A

8
In

te
l A

to
m

 E
38

26
 d

ua
l

In
te

l Q
ua

rk
 X

10
00

67
7M

H
z

1.
2G

H
z

80
0M

H
z

1.
46

G
H

z
40

0M
H

z
51

2M
B

 D
D

R
3

1G
B

 L
PD

D
R

2
51

2M
B

 L
PD

D
R

2G
B

 L
PD

D
R

3
25

6M
B

 D
D

R
3


