

WhizniumSBE and WhizniumDBE

MPSI Technologies Modular Vision Demonstrator

Thermal Imager Data Path

A code walkthrough

September 19, 2018

Alexander Wirthmüller

aw@mpsitech.com

MPSI Technologies GmbH

FOR INTERNAL USE

 2

OVERVIEW ... 3

1 FLIR LEPTON3 MODULE ... 4

2 ZYNQ PL / FPGA MULTISPECTRALDETECTORDEVICE RTL CODE ... 4

3 ZYNQ PS / EMBEDDED LINUX MULTISPECTRALDETECTORDEVICE C++ LIBRARY 6

4 ZYNQ PS / EMBEDDED LINUX MULTISPECTRALDETECTORCONTROL ENGINE 7

5 CLIENT WEB-BROWSER MULTISPECTRALDETECTORCONTROL WEB-BASED UI 9

This document is copyrighted and confidential material owned by MPSI Technologies GmbH,
Munich/Germany.

 3

Overview

This code walkthrough offers a basic understanding of embedded data processing using a
combined WhizniumDBE and WhizniumSBE project of moderate complexity as an example.

The presented use case follows the data path of thermal images from their origin, a FLIR
Lepton3 thermal imager, via FPGA-based read-out and Embedded Linux executable to a
client's web-browser, see Figure 1.

Figure 1: Five-step data path.

In order to follow this guide, it is suggested to download/clone the following repositories
from the MPSI Technologies GitHub account:

• MultiSpectralDetectorDevice: modular vision demonstrator FPGA sub-system code
https://github.com/mpsitech/MultiSpectralDetectorControl

• dbecore: WhizniumDBE core library1 https://github.com/mpsitech/dbecore
• MultiSpectralDetectorControl: modular vision demonstrator Embedded Linux code

https://github.com/mpsitech/MultiSpectralDetectorDevice
• sbecore: WhizniumSBE core library1 https://github.com/mpsitech/sbecore

1 dbecore and sbecore are suggested to follow the inline “excursions”

 4

1 FLIR Lepton3 module

Within the 160x120 pixel FLIR Lepton3 thermal imager module, frame data is produced at a
rate of 9fps. After module initialization via I2C, it is provided as a steady stream through a
SPI interface.

This manufacturer datasheet provides details: https://www.flir.com/globalassets/imported-
assets/document/flir-lepton-engineering-datasheet.pdf

Reset and master clock signals along with both serial interfaces are routed via custom
hardware to a commercial Zynq evaluation board (“Zedboard”), where they end up at
suitable FPGA I/O pads ; the hardware signals are detailed in Figure 2.

Lepton3 pin FPGA pad purpose
RESET_L nirst (N17) FPGA -> FLIR reset
MASTER_CLK imclk (P21) FPGA -> FLIR 25MHz clock

I2C 2-wire interface, “fast” mode 400kbps
Lepton3 pin FPGA pad purpose
SCL iscl (L17) FPGA -> FLIR clock
SDA isda (M17) bi-directional push-pull data

SPI 3-wire interface, CPOL=1, CPHA=1, 12.5MHz
Lepton3 pin FPGA pad purpose
SPI_CS_L niss (N18) FPGA -> FLIR chip select
SPI_CLK isck (P20) FPGA -> FLIR clock
SPI_MISO irxd (T19) FLIR -> FPGA data

Figure 2: Lepton3 hardware signals and their connections to the FPGA

2 Zynq PL / FPGA MultiSpectralDetectorDevice RTL code

Lepton3 configuration

File: MultiSpectralDetectorDevice/msdd/zedb/Lwirif.vhd

The main operation (op) FSM reacts to the command invocation setRng(rng=tru8) in its
states stateOpInit/Inv using the host interface handshake ports req/ackInvSetRng.

A five second initialization time span, required by the Lepton3 module when coming out of
reset with its master clock applied, is implemented using the unit’s 10kHz signal tkclk
(stateOpStartA/B).

Every five seconds, the Lepton3 read commands getSerno, getPartno, getAuxtemp,
getFpatemp and getStats (sequence in stateOpLoopCmd) are triggered through the I2C

 5

interface. Each read represents a 6-byte transfer in which one 16-bit data word is read from
the module.

First the transfer length is transmitted to the Lepton3 module in stateOpSetLenA/B,
followed by the command’s base address in stateOpSetCmdA/B. If no module error is
encountered, all bytes are burst-read in states stateOpReadA/B.

Each I2C transfer is activated using the combinatorial stateOp-dependent signal reqI2c.

File: MultiSpectralDetectorDevice/msdd/zedb/I2c.vhd

Transfer operation (xfer) FSM.

Frame acquisition

File: MultiSpectralDetectorDevice/msdd/zedb/Lwiracq.vhd

Main operation (op) FSM loops over segments and packets, filling ping-pong (A/B) buffer.
{a/b}buf mutex management (buf) FSM takes care of A/B full/clear logic. {a/b}buf B/hostif-
facing operation (bufB) FSM is used to output the correct data to the host interface.

File: MultiSpectralDetectorDevice/msdd/zedb/Spimaster_v1_0.vhd

Transfer operation (xfer) FSM. Strobe for every byte received.

File: MultiSpectralDetectorDevice/msdd/zedb/Dpbram_v1_0_size38kB

2x dual-port RAM connected to host interface.

Host interface

File: MultiSpectralDetectorDevice/msdd/zedb/Zedb.vhd

Command set constant definitions. Relevant for example:
tixVControllerLwiracq/Lwirif, tixVLwiracqCommandSetRng,
tixVLwiracqCommandGetInfo (status polling),
tixWBuffer{Abuf/Bbuf}LwiracqToHostif.

File: MultiSpectralDetectorDevice/msdd/zedb/Hostif.vhd

Main operation (op) FSM allows various types of transfers:

stateOpRxop -> stateOpRx -> stateOpTxack:
command with non-empty invocation parameters

 stateOpRxop -> stateOpTx:
 command with non-empty return parameters
 stateOpRxop -> stateOpRxbuf -> stateOpTxack:
 buffer transfer host to FPGA
 stateOpRxop -> stateOpTxbuf:
 buffer transfer FPGA to host

File: MultiSpectralDetectorDevice/msdd/zedb/Crc8005_v1_0.vhd

 6

On-the-fly byte-wise CRC calculation in one clock cycle.

File: MultiSpectralDetectorDevice/msdd/zedb/Axirx_v1_0.vhd, Axitx_v1_0.vhd

AXI interconnect reacting to transfers initiated by the host (RX and TX) ; signals enRx, rx,
strbRx, enTx, strbTx generated from original bus signals in wrapper module
Zedb_ip_v1_0_S00_AXI.vhd.

3 Zynq PS / Embedded Linux MultiSpectralDetectorDevice C++ library

Status polling

File: MultiSpectralDetectorDevice/msdd/devmsdd/UntMsddZedb/zedb/CtrMsddZedbLwiracq.cpp

After starting the acquisition using void setRng(const bool rng), the method void
getInfo(utinyint& tixVBufstate, uint& tkst, usmallint& min,
usmallint& max)- return parameters only, is invoked until the buffer state
tixVBufstate (vector declaration in CtrMsddZedbLwiracq.h, VecVBufstate) reaches
abuf or bbuf. At this time, tkst/min/max contain the frame metadata (10kHz clock time
stamp, min/max values), and the frame data is available for buffer transfer.

File: MultiSpectralDetectorDevice/msdd/devmsdd/UntMsddZedb/zedb/UntMsddZedb.cpp

Byte-level command and buffer transfer communication is handled in rx(unsigned
char* buf, const size_t buflen) and tx(unsigned char* buf, const
size_t buflen). The AXI interconnect is a Unix character device, allowing the use of
standard read() / write() methods.

Excursion: Invocation parameters to byte sequence

Files: dbecore/Cmd.cpp, dbecore/Par.cpp

Cmd::parsInvToBuf(unsigned char** buf, size_t& buflen) and
Par::parsToBuf(map<string,Par>& pars, vector<string>& seqPars,
unsigned char** buf, size_t& buflen).

Buffer transfer

File: MultiSpectralDetectorDevice/msdd/devmsdd/UntMsddZedb/zedb/UntMsddZedb.cpp

A frame comprises 38400 data bytes, which are followed by 2 CRC bytes in a single read
transfer. The buffer transfer is initiated by a call to void
read{Abuf/Bbuf}FromLwiracq(const size_t reqlen, unsigned char*&
data, size_t& datalen) which in turn calls …

File: MultiSpectralDetectorDevice/msdd/devmsdd/Msdd.cpp

 7

… bool runBufxf(Bufxf* bufxf) and bool runBufxfFromBuf(Bufxf* bufxf).
Memory allocation can be internal or external. Notably, on read operations from the FPGA
subsystem, non-detection of erroneous all-zero transfers is avoided by inverting the CRC
bytes.

4 Zynq PS / Embedded Linux MultiSpectralDetectorControl engine

LWIR acquisition thread and infinite loop

File: MultiSpectralDetectorControl/msdc/msdccmbd/gbl/JobMsdcSrcMsdd.cpp

The acquisition is started by a call to bool startLwir(unsigned char* buf0, void
(*callback)(void*), void* argCallback), to which a pointer to an (allocated)
buffer for the first frame and a callback method + argument are passed.

WhizniumDBE’s “easy” model does not support non-blocking operation when waiting for
new frames, so that a separate thread with periodic polling is started.

The thread entry point is void* runLwir(void* arg) ; within its infinite loop, a buffer
transfer is performed each time a new frame becomes available, after which the provided
callback function is invoked.

Callback, acquisition and process stage

File: MultiSpectralDetectorControl/msdc/msdccmbd/gbl/JobMsdcAcqLwir.cpp

The callback function void MsddCallback(void* arg) is executed from within the
thread mentioned before. It is thus crucial that it only performs the minimal actions required
and then returns to the acquisition loop.

If an empty buffer is available for the next frame, the callback points the acquisition thread
to it using void JobMsdcSrcMsdd::setLwirBuf(unsigned char* buf), else a NULL
pointer is passed, resulting in omitted frames. This condition is resolved once a buffer
becomes available in uint enterSgeAcq(DbsMsdc* dbsmsdc, const bool
reenter).

Control over the newly arrived frame is passed on to one of the engine’s job processor
threads, by triggering an external call which is handled in bool
handleCallMsdcBufrdy(DbsMsdc* dbsmsdc, const ubigint jrefTrig, const
boolvalInv). If the job’s state machine is ready for a new frame, i.e. is in stage WAITBUF,
the stage is changed to ACQ, else the frame is dropped.

In uint enterSgeAcq(DbsMsdc* dbsmsdc, const bool reenter), an optional
geometrical transform is applied to the frame, and also the raw data is auto-gain-corrected
to spread over the entire 16-bit grayscale space.

 8

Acquisition takes place in the master job, and triggering a CallMsdcIbitRdy notifies all
slaves of the now pre-processed frame.

Both the master job an all slave jobs subsequently switch into the PRC stage, where each
instance of JobMsdcAcqLwir can perform the additional geometrical transforms it needs.

Finally, also in uint enterSgePrc(DbsMsdc* dbsmsdc, const bool reenter), a
CallMsdcImgRdy is triggered which notifies the superior (UI) panel job of the processed
frame.

Live data video panel

File: MultiSpectralDetectorControl/msdc/msdccmbd/CrdMsdcLiv/PnlMsdcLivVideo.cpp

In bool handleCallMsdcImgrdy(DbsMsdc* dbsmsdc, const ubigint
jrefTrig), the frame data is copied into a DpchEngLive dispatch (definition in
PnlMsdcLivVideo_blks.cpp), a serializable (to XML) C++ object. As the following HTTPS
transfer to the client is to be initiated by the server (at least virtually / emulated), the
dispatch is passed on to a dispatch collector up the job hierarchy.

Dispatch collector for long polling

File: MultiSpectralDetectorControl/msdc/msdccmbd/Msdccmbd.cpp

HTTP/1.1 does not support communication triggered by the server for which reason
WhizniumSBE applications use “long polling” (delayed answering of a client request to
emulate server-triggered action). Per card or browser tab, in this case for CrdMsdcLiv, a
dispatch collector accumulates pending dispatches while no client request is available.

In the engine’s exchange object, void submitDpch(DpchEngMsdc* dpcheng) handles
the matching of dispatches to be transferred to available dispatch collectors. If a (now
obsolete) DpchEngLive is alrady present, its content is overwritten/merged with the new
LWIR frame.

If a HTTPS request is available, control will move over to the application server, else the
dispatch will be retained.

HTTPS application server powered by libmicrohttpd

File: MultiSpectralDetectorControl/msdc/msdccmbd/MsdccmbdAppsrv.cpp

Dispatch collector (“notify”) HTTPS/GET requests are received at the URL
https://<ip>:<port>/notify/<scrJref> where <scrJref> is the scrambled job
reference, in this case of the relevant instance of CrdMsdcLiv.

In the application server’s libmicrohttpd callback function, int MhdCallback(void*
cls, MHD_Connection* connection, const char* url, const char*
method, const char* version, const char* upload_data, size_t*
upload_data_size, void** con_cls) and then void

 9

writeDpchEng(XchgMsdccmbd* xchg, ReqMsdc* req), the dispatch is serialized into
a XML string using its void writeXML(const uint ixMsdcVLocale,
xmlTextWriter* wr) method.

Excursion: Base64 encoding for XML

Files: sbecore/Xmlio.cpp

Binary data (8-bit character space) is reduced to Base64 encoding (6-bit character space) in
void toBase64(const unsigned char* inbuf, unsigned int inbuflen,
char** outbuf, unsigned int& outbuflen) in order to be transmitted correctly.
Also, machine type (e.g. Intel little-endian, ARM big-endian) independence is warranted by
always using “network order” (big-endianness) for the transfer of multi-byte variables, this is
implemented in void writeBase64(xmlTextWriter* wr, const char* _buf,
const unsigned int len, const unsigned int varlen).

5 Client web-browser MultiSpectralDetectorControl web-based UI

HTML5 canvas element

File: MultiSpectralDetectorControl/msdc/webappmsdc/CrdMsdcLiv/PnlMsdcLivVideo_bcont.xml

In terms of WhizniumSBE modeling, the area in which the LWIR image is to be displayed, is a
custom control CusImg in row <tr id="trImg"> of height 480 pixels. A HTML5 canvas
element is inserted manually, its bitmap content is accessible through JavaScript code.

Long-polling the engine’s application server

File: MultiSpectralDetectorControl/msdc/webappmsdc/CrdMsdcLiv/CrdMsdcLiv.js

The function iterateReqit() forms the counterpart to the engine’s dispatch collector.
The responseXML representation of the data received already allows to interpret the
dispatch XML root tag. Each card knows its panel’s scrambled job references, allowing to
pass on a received dispatch accordingly (here to PnlMsdcLivVideo).

Image display

File: MultiSpectralDetectorControl/msdc/webappmsdc/CrdMsdcLiv/PnlMsdcLivVideo.js

The DpchEngLive arrives at handleDpchEng(dom, dpch) and then
handleDpchEngMsdcLivVideoLive(dom). Its non-binary content is inserted into the
panel’s DOM, while the grayscale bitmap is transformed back into binary form and
subsequently stored in the variable doc.gray.

Along with some scaling, the function refreshLive(mask) is responsible for updating the
canvas RGBX bitmap content.

 10

Excursion: Base64 decoding

File: MultiSpectralDetectorControl/msdc/webappmsdc/script/vecio.js

Function fromBase64(str). As JavaScript does not assume “network order” but rather the
local machine’s endianness, also an optional re-ordering is implemented in all
parse*(str) functions.

