
MAINTAINING PLATFORM FLEXIBILITY USING A
MODEL-BASED SOFTWARE DESIGN APPROACH

Alexander Wirthmüller
aw@mpsitechnologies.com

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Introduction
About me

• Based in Munich

• Diploma in Electrical Engineering

• R&D Engineer at Mynaric (FPGA-based error-correction
algorithms for free-space optical laser communications)

• Founder and Director at MPSI Technologies

• MPSI Technologies: make Embedded Software development
more fun by replacing repetitive tasks by model-based source
code generation

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Silicon device landscape

• Increasing number of contenders

• Specific strengths, can be:

• Low static / dynamic power consumption

• “Extra” features such as DSP blocks
or high-performance or PHY-specific I/O’s

• The right size / attractive price point

• Competition for FPGA-typical functionality
from CPU’s featuring vector extensions / SIMD

Making a case for platform flexibility

Application landscape
• Requirements are not written in stone,

architectures need to adapt, e.g.:
• 100Mbit/s vs. 1Gbit/s Ethernet
• 1 megapixel vs. 5 megapixel camera modules
• Single-channel vs. multi-channel DSP

• Skillset of available staff can influence
FPGA vs. CPU decision making

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Demo project: Tabletop 3D laser scanner
Hardware variants | Key software functionality

Features
• Turntable with stepper motor
• Tripod with camera/laser holder
• IMX335 MIPI CSI-2 camera (5MP)

max. data rate 150MB/s @30fps
• Two adjustable red line lasers

Vendor / device Configuration

CrossLink-NX (v1)

i.MX6

Zynq

UniversalBee

PF SoC

CrossLink-NX (v2)

< Bandwidth

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Demo project: Tabletop 3D laser scanner
Hardware variants | Key software functionality

• Preview image acquisition

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Demo project: Tabletop 3D laser scanner
Hardware variants | Key software functionality

• Preview image acquisition

• Checkerboard corner detection for orientation

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Demo project: Tabletop 3D laser scanner
Hardware variants | Key software functionality

• Preview image acquisition

• Checkerboard corner detection for orientation

• On/off identification of line laser traces in
frames

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Demo project: Tabletop 3D laser scanner
Hardware variants | Key software functionality

• Preview image acquisition

• Checkerboard corner detection for orientation

• On/off identification of line laser traces in
frames

each algorithm can be performed

either on the Linux host or on the FPGA,

with varying load on the interconnect

yet each one host/FPGA source code tree

à ß

à ß

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• Most use cases can be covered using few parameters

• Size

• PortA/B widths 8/16/32/64 bits

• PortA/B read- vs. write-only

• Output buffer yes/no

• Route to vendor-independence

• VHDL wrapper with standardized port names

• Give instructions for configuring IP wizards

Spotlight on FPGA vendor IP 1/3
Dual-port RAM | MIPI CSI-2 PHY | Pipelined algorithm

Dpram (
[vendor,]
size [kB],
width{A/B}{8/16/32/64},
{rd/wr}only{A/B},
buf{A/B}

)

entity Dpram_v1_0_size58kB is
 port (
 clkA: in std_logic;

 enA: in std_logic;
 weA: in std_logic;

 aA: in std_logic_vector(15 downto 0);
 drdA: out std_logic_vector(7 downto 0);
 dwrA: in std_logic_vector(7 downto 0);

 clkB: in std_logic;

 enB: in std_logic;

 aB: in std_logic_vector(13 downto 0);
 drdB: out std_logic_vector(31 downto 0)
);
end Dpram_v1_0_size58kB;

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• Silicon capabilities vary significantly

• Lattice: integrated PHY/Decoder IP

• Microchip: IOD IP, PLL and MIPI RX Decoder IP

• Xilinx: SelectIO (from UltraScale+ native MIPI),
“MIPI CSI-2 Receiver Subsystem“ IP to AXI Stream

• VHDL wrapper with standardized AXI Stream output

Spotlight on FPGA vendor IP 2/3
Dual-port RAM | MIPI CSI-2 PHY | Pipelined algorithm

Mipirx (
[vendor,]
fDDR [MHz],
nLane{1,2,4},
res{8,10,12,14}

)

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• Example: Harris corner detection algorithm, matrix formula

• Five-wide (14-/24-long) pipeline: signed multiplications and sums/differences

• Generic VHDL possible but limited control (latency, resource usage) for multiplications and three-
input sums

• Optimized manual implementation requiring custom wait cycles

• E.g. Xilinx: DSP48 macro and higher-level wizards “Adder/Subtracter“, “Multiplier“

Spotlight on FPGA vendor IP 3/3
Dual-port RAM | MIPI CSI-2 PHY | Pipelined algorithm

𝑅 = det 𝑀 − 𝑘 trace 𝑀 !𝑀 =
,

",$%&!

! 𝜕𝐼
𝜕𝑥

!

,
",$%&!

! 𝜕𝐼
𝜕𝑥

𝜕𝐼
𝜕𝑦

,
",$%&!

! 𝜕𝐼
𝜕𝑥

𝜕𝐼
𝜕𝑦 ,

",$%&!

! 𝜕𝐼
𝜕𝑦

!

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• Example: Harris corner detection algorithm, matrix formula

• Five-wide (14-/24-long) pipeline: signed multiplications and sums/differences

• Generic VHDL possible but limited control (latency, resource usage) for multiplications and three-
input sums

• Optimized manual implementation requiring custom wait cycles

• E.g. Xilinx: DSP48 macro and higher-level wizards “Adder/Subtracter“, “Multiplier“

Spotlight on FPGA vendor IP 3/3
Dual-port RAM | MIPI CSI-2 PHY | Pipelined algorithm

𝑅 = det 𝑀 − 𝑘 trace 𝑀 !𝑀 =
,

",$%&!

! 𝜕𝐼
𝜕𝑥

!

,
",$%&!

! 𝜕𝐼
𝜕𝑥

𝜕𝐼
𝜕𝑦

,
",$%&!

! 𝜕𝐼
𝜕𝑥

𝜕𝐼
𝜕𝑦 ,

",$%&!

! 𝜕𝐼
𝜕𝑦

!

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• Example: Harris corner detection algorithm, matrix formula

• Five-wide (14-/24-long) pipeline: signed multiplications and sums/differences

• Generic VHDL possible but limited control (latency, resource usage) for multiplications and three-
input sums

• Optimized manual implementation requiring custom wait cycles

• E.g. Xilinx: DSP48 macro and higher-level wizards “Adder/Subtracter“, “Multiplier“

Spotlight on FPGA vendor IP 3/3
Dual-port RAM | MIPI CSI-2 PHY | Pipelined algorithm

𝑅 = det 𝑀 − 𝑘 trace 𝑀 !𝑀 =
,

",$%&!

! 𝜕𝐼
𝜕𝑥

!

,
",$%&!

! 𝜕𝐼
𝜕𝑥

𝜕𝐼
𝜕𝑦

,
",$%&!

! 𝜕𝐼
𝜕𝑥

𝜕𝐼
𝜕𝑦 ,

",$%&!

! 𝜕𝐼
𝜕𝑦

!

 --

 -- implementation: Harris score pipeline forward operation (fwd)

 --

 process (reset, mclk, stateFwd)

 begin

 if reset='1' then

 -- ...

 elsif rising_edge(mclk) then

 if stateFwd=stateFwdRun then

 if ceScore='1' then
 xsqr3p1 <= xsqr(71 downto 54);

 xsqr3p2 <= xsqr3p1;

 xsqr4p1 <= xsqr(89 downto 72);

 xsqr4p2 <= xsqr4p1;

 colsumX4p1 <= colsumX(104 downto 84);

 colsumX4p2 <= colsumX4p1;
 colsumX4p3 <= colsumX4p2;

 colsumX4p4 <= colsumX4p3;

 -- ...

 diffI_IIp1 <= diffI_II;

 end if;

 end if;
 end if;

 end process;

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Spotlight on the host-FPGA interconnect
Layer model | Hardware abstraction | Command invocation | Buffer transfer

Linux host FPGA
RTL algorithms,

state machines, etc.
target-specific target module
C++ API library RTL handshake
encode/decode host interface

C++ code RTL module
hardware abstraction layer device driver soft IP

silicon IP and copper wires
standard-compliantphysical layer

protocol layer

application layer handoff

application layer C++ data processing

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Spotlight on the host-FPGA interconnect
Layer model | Hardware abstraction | Command invocation | Buffer transfer

Complexity Net bandwidth Support Conditions

UART 2 wire 400 kB/s i.MX6 (all 32/64bit SoC’s) 4 Mbps on-PCB routing

UART over USB 2 wire 417 kB/s FTDI x64 host USB2.0 hi-speed,
FT232R

SPI 3 wire 4.8 MB/s OMAP3xxx (all 32/64bit SoC’s) 40 MHz on-PCB routing

AXIlite (on-chip) 50 MB/s Zynq (all FPGA-SoC’s) 32 bit words, 100 MHz clock

PCIe 3 diff. pair, 4 wire 250 MB/s CrosslinkNX (all mid-range
FPGA’s)

one lane PCIe 1.x, 2.5 Gbps

AXI4 (on-chip) 776 MB/s PolarFire SoC (all FPGA-SoC’s) 64 bit x 256 bursts, 100 MHz
clock

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• Linux host

• Character device driver (open(), ioctl(), read(), write(), close())

• Easily applicable for UART, SPI, AXIlite

• User I/O API for PCIe and AXI4 with DMA (works with interrupts and callbacks)

• FPGA design

• Generic UART, SPI, AXIlite modules for basic rx/tx(<number of words>)

• PCIe IP by four major vendors free but not Open Source

Spotlight on the host-FPGA interconnect
Layer model | Hardware abstraction | Command invocation | Buffer transfer

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• RTL module examples

Spotlight on the host-FPGA interconnect
Layer model | Hardware abstraction | Command invocation | Buffer transfer

entity Uartrx_v1_1 is
 generic(
 fMclk: natural range 1 to 1000000;

 fSclk: natural range 100 to 50000000
);
 port(
 reset: in std_logic;

 mclk: in std_logic;

 req: in std_logic;
 ack: out std_logic;
 dne: out std_logic;

 len: in std_logic_vector(16 downto 0);

 d: out std_logic_vector(7 downto 0);
 strbD: out std_logic;

 rxd: in std_logic;

 burst: in std_logic
);
end Uartrx_v1_1;

	

entity Spislave_v1_0 is
 generic (
 cpol: std_logic := '0';
 cpha: std_logic := '0';

 nssByteNotXfer: std_logic := '0';
 misoPrecphaNotCpha: std_logic := '0'
);
 port (
 reset: in std_logic;

 mclk: in std_logic;

 req: in std_logic;
 ack: out std_logic;
 dne: out std_logic;

 len: in std_logic_vector(16 downto 0);

 send: in std_logic_vector(7 downto 0);
 strbSend: out std_logic;

 recv: out std_logic_vector(7 downto 0);
 strbRecv: out std_logic;

 nss: in std_logic;
 sclk: in std_logic;
 mosi: in std_logic;
 miso: inout std_logic
);
end Spislave_v1_0;

	

 process (extresetn, extclk)

 -- ...

 begin

 if extresetn='0' then
 stateOp <= stateOpInit;

 -- ...

 elsif rising_edge(extclk) then

 if stateOp=stateOpInit then

 -- ...

 stateOp <= stateOpIdle;

 elsif stateOp=stateOpIdle then

 if (axi_bvalid='1' and loc_waddr="00" and slv_reg0=x"AAAAAAAA") then -- host to FPGA begin request

 if rdyRx='1'then

 enRx <= '1';

 end if;

 stateOp <= stateOpWrrdyA;

 elsif (axi_bvalid='1' and loc_waddr="10" and slv_reg2=x"AAAAAAAA") then -- FPGA to host begin request

 if rdyTx='1'then

 enTx <= '1';

 end if;

 stateOp <= stateOpRdrdyA;

 end if;

 -- ...

 end if;

 end if;

 end process;
	

entity Axirx_v2_0 is
 port(
 reset: in std_logic;

 mclk: in std_logic;

 req: in std_logic;
 ack: out std_logic;
 dne: out std_logic;

 len: in std_logic_vector(21 downto 0); -- in words, max. 2^22-1

 d: out std_logic_vector(31 downto 0);
 strbD: out std_logic;

 rdyRx: out std_logic;
 enRx: in std_logic;

 rx: in std_logic_vector(31 downto 0);
 strbRx: in std_logic
);
end Axirx_v2_0;

AXIlite

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Spotlight on the host-FPGA interconnect
Layer model | Hardware abstraction | Command invocation | Buffer transfer

• Host: C++ API library forms byte code and initiates transfers guarded by CRC
step.moveto(angle=340,Tstep=150)
 tx 0x02 06 01 0005 78FA
 1. 2. 3. 4. 5.

1. hostifToCmdinv
2. controller:step
3. command:moveto
4. length:5
5. CRC

 tx 0x0154 96 7B65
 1. 2. 3.

1. angle:340(uint16)
2. Tstep:150(uint8)
3. CRC

 rx 0xAAAA
 ACK
= ()

step.getInfo()
 tx 0x01 06 00 0005 F865
 1. 2. 3. 4. 5.

1. cmdretToHostif
2. controller:step
3. command:getInfo
4. length:5
5. CRC

 rx 0x00 00E2 A8E6
 1. 2. 3.

1. state:moving
2. angle:226(uint16)
3. CRC

=(tixVState=move,angle=226)

step.getInfo()
 tx 0x01 06 00 0005 F865
 rx 0x00 0154 AD52
=(tixVState=idle,angle=340)
	

Linux host FPGA
RTL algorithms,

state machines, etc.
target-specific target module
C++ API library RTL handshake
encode/decode host interface

C++ code RTL module
hardware abstraction layer device driver soft IP

silicon IP and copper wires
standard-compliantphysical layer

protocol layer

application layer handoff

application layer C++ data processing

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Spotlight on the host-FPGA interconnect
Layer model | Hardware abstraction | Command invocation | Buffer transfer

• FPGA: ”host interface” module decodes the byte string and triggers a handshake with the ”step” target module

PS-PL
sw
itch

AXIlite IP
32bit

Axirx

Axitx
Hostif

Step
stepper motor
control

entity Step is

 generic (

 fMclk: natural range 1 to 1000000 := 50000 -- in kHz

);

 port (
 reset: in std_logic;

 mclk: in std_logic;

 tkclk: in std_logic;

 ...

 reqInvMoveto: in std_logic;

 ackInvMoveto: out std_logic;

 movetoAngle: in std_logic_vector(15 downto 0);

 movetoTstep: in std_logic_vector(7 downto 0);

 ...

 nslp: out std_logic;

 m0: inout std_logic;
 dir: out std_logic;

 step0: out std_logic

);

end Step;

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Spotlight on the host-FPGA interconnect
Layer model | Hardware abstraction | Command invocation | Buffer transfer

• FPGA: reduce 2560x1920 YUV images @30fps (150MB/s)
to 160x120 RGB images (1.73MB/s), then provide to host in A/B buffer

• Host: poll the buffer status, initiate buffer transfer and display

M
IPI
CSI
PH
Y

Mipirx
deserialization,
frame identification

Camacq
binning, buffer
coordination

PvwbufA
58kB DPBRAM

PvwbufB
58kB DPBRAM

Hostif
Axirx

Axitx

AXIlite IP
32bit PS

-P
L

sw
itc
hvoid* JobWzskAcqFpgapvw::runPvw(

 void* arg
) {
 // - prepare
 shrdat.mPvw.lock("JobWzskAcqFpgapvw", "runPvw[1]");

 srv->srcarty->camacq_setPvw(false, 0, 0);
 srv->srcarty->camif_setRng(true);

 shrdat.mPvw.unlock("JobWzskAcqFpgapvw", "runPvw[1]");

 // - loop
 while (true) {
 if (shrdat.cancelPvw) break;

 shrdat.mPvw.lock("JobWzskAcqFpgapvw", "runPvw[2]");

 srv->srcarty->camacq_getPvwinfo(tixVPvwbufstate, tkst);

 if ((tixVPvwbufstate == VecVWskdArtyCamacqPvwbufstate::ABUF) || (tixVPvwbufstate == VecVWskdArtyCamacqPvwbufstate::BBUF)) {
 if (tixVPvwbufstate == VecVWskdArtyCamacqPvwbufstate::ABUF) srv->srcarty->shrdat.hw.readPvwabufFromCamacq(sizeBuf, buf, datalen);
 else if (tixVPvwbufstate == VecVWskdArtyCamacqPvwbufstate::BBUF) srv->srcarty->shrdat.hw.readPvwbbufFromCamacq(sizeBuf, buf, datalen);

 shrdat.mPvw.unlock("JobWzskAcqFpgapvw", "runPvw[2]");

 } else {
 shrdat.mPvw.unlock("JobWzskAcqFpgapvw", "runPvw[3]");

 nanosleep(&deltat, NULL);
 };
 };

 return NULL;
};

Linux host FPGA
RTL algorithms,

state machines, etc.
target-specific target module
C++ API library RTL handshake
encode/decode host interface

C++ code RTL module
hardware abstraction layer device driver soft IP

silicon IP and copper wires
standard-compliantphysical layer

protocol layer

application layer handoff

application layer C++ data processing

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Spotlight on the host-FPGA interconnect
Layer model | Hardware abstraction | Command invocation | Buffer transfer

• FPGA: reduce 2560x1920 YUV images @30fps (150MB/s)
to 160x120 RGB images (1.73MB/s), then provide to host in A/B buffer

• Host: poll the buffer status, initiate buffer transfer and display

M
IPI
CSI
PH
Y

Mipirx
deserialization,
frame identification

Camacq
binning, buffer
coordination

PvwbufA
58kB DPBRAM

PvwbufB
58kB DPBRAM

Hostif
Axirx

Axitx

AXIlite IP
32bit PS

-P
L

sw
itc
hvoid* JobWzskAcqFpgapvw::runPvw(

 void* arg
) {
 // - prepare
 shrdat.mPvw.lock("JobWzskAcqFpgapvw", "runPvw[1]");

 srv->srcarty->camacq_setPvw(false, 0, 0);
 srv->srcarty->camif_setRng(true);

 shrdat.mPvw.unlock("JobWzskAcqFpgapvw", "runPvw[1]");

 // - loop
 while (true) {
 if (shrdat.cancelPvw) break;

 shrdat.mPvw.lock("JobWzskAcqFpgapvw", "runPvw[2]");

 srv->srcarty->camacq_getPvwinfo(tixVPvwbufstate, tkst);

 if ((tixVPvwbufstate == VecVWskdArtyCamacqPvwbufstate::ABUF) || (tixVPvwbufstate == VecVWskdArtyCamacqPvwbufstate::BBUF)) {
 if (tixVPvwbufstate == VecVWskdArtyCamacqPvwbufstate::ABUF) srv->srcarty->shrdat.hw.readPvwabufFromCamacq(sizeBuf, buf, datalen);
 else if (tixVPvwbufstate == VecVWskdArtyCamacqPvwbufstate::BBUF) srv->srcarty->shrdat.hw.readPvwbbufFromCamacq(sizeBuf, buf, datalen);

 shrdat.mPvw.unlock("JobWzskAcqFpgapvw", "runPvw[2]");

 } else {
 shrdat.mPvw.unlock("JobWzskAcqFpgapvw", "runPvw[3]");

 nanosleep(&deltat, NULL);
 };
 };

 return NULL;
};

Linux host FPGA
RTL algorithms,

state machines, etc.
target-specific target module
C++ API library RTL handshake
encode/decode host interface

C++ code RTL module
hardware abstraction layer device driver soft IP

silicon IP and copper wires
standard-compliantphysical layer

protocol layer

application layer handoff

application layer C++ data processing

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• Use fine granularity for C++ classes, and well-defined interfaces

• Example: user session (preview image) Lattice FPGA vs. Xilinx FPGA-SoC vs. NXP i.MX6

• Web UI jobs in blue, communicate over HTTP(S) using JSON/XML

• Preview acquisition job in green, reacts on new frame available and passes it on to web UI job

• FPGA preview job in orange, runs thread polling FPGA preview buffer status and transfers data

• Source jobs in red, interact with FPGA (UART-over-USB vs. AXIlite) vs. with camera using V4L2 API

Spotlight on host software
Job tree | Vector extensions

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• Decision on which jobs to instantiate using global flag

Spotlight on host software
Job tree | Vector extensions

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• Use #ifdef guards to determine architecture

• Grayscale binning for ARM -> intel x64 -> others

Spotlight on host software
Job tree | Vector extensions

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• Use #ifdef guards to determine architecture

• Grayscale binning for ARM -> intel x64 -> others

Spotlight on host software
Job tree | Vector extensions

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• Use #ifdef guards to determine architecture

• Grayscale binning for ARM -> intel x64 -> others

Spotlight on host software
Job tree | Vector extensions

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• Use #ifdef guards to determine architecture

• Grayscale binning for ARM -> intel x64 -> others

Spotlight on host software
Job tree | Vector extensions

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Model-based software design with Whiznium
Overview | Composition | Example

• Coverage of the
“Embedded Full Stack”

• WhizniumDBE (“Device
Builder’s Edition”) for
FPGA / MCU level and its
host access libraries
(primary languages: C,
VHDL)

• WhizniumSBE (“Service
Builder’s Edition”) for
Embedded Linux and
“outside world” levels
(primary languages: C++,
HTML)

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Model-based software design with Whiznium
Overview | Composition | Example

• Successive model composition within an SQL database using import (I) and generation (G) steps

• Output of source code trees only thereafter

• Text-based model files (”diffable”)

WhizniumDBE (Device Builder’s Edition)
• Modular structure (I)
• Command set and buffer transfers (I)
• Data flows and algorithms (I)
• Fine structure (G)
• Custom fine structure (I)
• Finalization (G)

WhizniumSBE (Service Builder’s Edition)
• Deployment information (I)
• Global features (I)
• Database structure (I)
• Basic user interface structure (I)
• Import/export structure (I)
• Operation pack structure (I)
• Custom jobs (I)
• User interface (G)
• Custom user interface features (I)
• Job tree (G)
• Custom job tree features (I)
• Finalization (G)

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Model-based software design with Whiznium
Overview | Composition | Example

• Module definition, command definition, fine structure

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Model-based software design with Whiznium
Overview | Composition | Example

• Module definition, command definition, fine structure

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Model-based software design with Whiznium
Overview | Composition | Example

• Module definition, command definition, fine structure

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Model-based software design with Whiznium
Overview | Composition | Example

• Module definition, command definition, fine structure

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Model-based software design with Whiznium
Overview | Composition | Example

• Module definition, command definition, fine structure

• Linux side developer-facing: executable API method

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Model-based software design with Whiznium
Overview | Composition | Example

• Module definition, command definition, fine structure

• Linux side developer-facing: executable API method

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Model-based software design with Whiznium
Overview | Composition | Example

• Module definition, command definition, fine structure

• Linux side developer-facing: executable API method

• Linux side in background: translation into byte code and invocation of character device driver (AXI)

• FPGA side in background: reception and decoding of byte code in “host interface” module, CRC
evaluation

• FPGA side developer-facing: handshake signals

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Model-based software design with Whiznium
Overview | Composition | Example

• Module definition, command definition, fine structure

• Linux side developer-facing: executable API method

• Linux side in background: translation into byte code and invocation of character device driver (AXI)

• FPGA side in background: reception and decoding of byte code in “host interface” module, CRC
evaluation

• FPGA side developer-facing: handshake signals

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Model-based software design with Whiznium
Overview | Composition | Example

• Module definition, command definition, fine structure

• Linux side developer-facing: executable API method

• Linux side in background: translation into byte code and invocation of character device driver (AXI)

• FPGA side in background: reception and decoding of byte code in “host interface” module, CRC
evaluation

• FPGA side developer-facing: handshake signals

• FPGA side left for manual implementation: finite state machine reacting to command invocation

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Model-based software design with Whiznium
Overview | Composition | Example

• Module definition, command definition, fine structure

• Linux side developer-facing: executable API method

• Linux side in background: translation into byte code and invocation of character device driver (AXI)

• FPGA side in background: reception and decoding of byte code in “host interface” module, CRC
evaluation

• FPGA side developer-facing: handshake signals

• FPGA side left for manual implementation: finite state machine reacting to command invocation

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• Whiznium is Open Source; the generated code is subject to no license restrictions

• Whiznium generates well-organized, human-readable source code trees which can be synthesized / compiled “out-
of-the-box”

• Manual modifications are enabled through the concept of “insertion points”

• Upon source code iteration (e.g. following model extension) manual modifications are carried over to the next
version

• Generated code relies on few, well-proven external libraries, all of which are Open Source. Standards are strictly
followed

• WhizniumDBE features parametrized “module templates”. Besides corresponding VHDL files, template-specific
intervention in the WhizniumDBE master database through C++ code is possible

• WhizniumSBE features parametrized “capability templates”. Also here, template-specific intervention in the
WhizniumSBE master database through C++ code is possible

Whiznium concepts
Modularity, transparency and re-usability

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• WhizniumSBE and WhizniumDBE are Linux-based ”daemons” (and [fun fact] WhizniumSBE projects), which receive
model information and send source code trees via HTTPS

• Java tools WhizniumDBE/SBE Bootstrap offer initialization of WhizniumDBE/SBE with project information stored in
a local folder structure

• Java tools WhizniumDBE/SBE Iterator help transform local source code trees from the current version to the next.
Here, API calls replace manual UI clicks

Whiznium tools
Incorporation into existing developer workflows

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• WhizniumSBE and WhizniumDBE are Linux-based ”daemons” (and [fun fact] WhizniumSBE projects), which receive
model information and send source code trees via HTTPS

• Java tools WhizniumDBE/SBE Bootstrap offer initialization of WhizniumDBE/SBE with project information stored in
a local folder structure

• Java tools WhizniumDBE/SBE Iterator help transform local source code trees from the current version to the next.
Here, API calls replace manual UI clicks

Whiznium tools
Incorporation into existing developer workflows

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• WhizniumSBE and WhizniumDBE are Linux-based ”daemons” (and [fun fact] WhizniumSBE projects), which receive
model information and send source code trees via HTTPS

• Java tools WhizniumDBE/SBE Bootstrap offer initialization of WhizniumDBE/SBE with project information stored in
a local folder structure

• Java tools WhizniumDBE/SBE Iterator help transform local source code trees from the current version to the next.
Here, API calls replace manual UI clicks

• WhizniumDBE code can be developed using the vendor-provided tools, e.g. Vivado, Quartus, Libero SoC or
Simplicity Studio

• WhizniumSBE code can be (cross-)compiled using the industry-standard tool chains gcc/Clang. (Remote-)Debugging
can be done using e.g. VS Code

• The Yocto project helps building custom Embedded Linux distributions for each FPGA-SoC platform. WhizniumSBE
projects run on those distributions

Whiznium tools
Incorporation into existing developer workflows

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• Both Whiznium tools are available free of charge on GitHub, including installation instructions

https://github.com/mpsitech/The-Whiznium-Documentation

• The Open Source StarterKit ist available for various hardware platforms, with vendor-specific
instructions also available on GitHub

• “The Whiznium Developer Experience” on YouTube is an ongoing Webinar series on Whiznium

• For advanced users WhizniumSBE/DBE cheat sheets are available which serve as reference for
writing model files

Whiznium resources

https://github.com/mpsitech/The-Whiznium-Documentation
https://github.com/mpsitech
https://www.youtube.com/playlist?list=PLYrNHebjziwvFniIOJc_9w1Mq561VqArv

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

• Avoid vendor lock-in where possible

• Limit use of block diagrams

• Use generic code for simple things (UART / SPI / AXIlite, math)

• Write wrappers around vendor-specific silicon (memory / high-speed transceivers)

• Model-based source code generation helps further

• Can abstract away hardware at the crucial host-FPGA interconnect, “single source of truth” maintains host-FPGA
integrity

• WhizniumDBE comes with a set of above mentioned wrappers

• WhizniumDBE maintains a coarse-to-fine project model in a database and is user-extensible (by means of C++
code, e.g. for frequently used IP)

Conclusion

Maintaining platform flexibility using a model-based software design approach FPGA Conference Europe 2022

Thank You!
Questions?

Alexander Wirthmüller
Founder & Director

Phone: +49 (89) 4524 3826
Mobile: +49 (175) 918 5480
E-Mail: aw@mpsitech.com

MPSI Technologies GmbH
Agnes-Pockels-Bogen 1
80992 Munich
Germany
www.mpsitech.com

Also, feel free to connect.

• https://www.linkedin.com/in/wirthmua

• https://github.com/mpsitech

https://github.com/mpsitech
https://github.com/mpsitech

