
www.embedded-world.eu

A model-based approach to mastering complexity in

FPGA-SoC software development

Alexander Wirthmüller (Author)
MPSI Technologies GmbH

Munich, Germany
aw@mpsitechnologies.com

Abstract—A comprehensive software development method is
presented which covers the vast range of software aspects to be
considered for feature-rich FPGA-SoC applications. By employing
an Open Source model-based design tool, the need for profound
programming skills at all, i.e. RTL, Embedded Linux and user
interface / M2M communication levels is greatly reduced. The
method allows developers to focus on core project functionality
while repetitive/auxiliary coding tasks are automated. At the same
time, clean source code structure and good coding standards can
be strictly enforced.

Keywords—software engineering; model-based design; FPGA-
SoC; heterogeneous computing

I. INTRODUCTION
Increasing availability of low-cost computer-on-modules

(COM's) based on FPGA-SoC's, combining compute cores and
programmable logic in one package, paves the way for complex
data processing and advanced control close to where the action
happens, for example on the factory floor.

While hardware capabilities are exploding, embedded
software developers are faced with a multitude of programming
concepts and languages to be mastered in order to make good
use of those features.

In this paper, the Open Source software development tool
Whiznium is presented with a tabletop 3D laser scanner serving
as use case. Rather than requiring manual project bring-up,
Whiznium gives developers a head-start by providing modular,
well-structured, auto-generated source code trees for complex
applications. Here, this is highlighted in individual project
aspects, ranging from RTL computer vision implemented in
VHDL, to multi-core Embedded Linux data processing and
session management in C++, to HTTPS and OPC UA
communication, for web user interfaces and industrial-grade
connectivity, respectively.

II. WHIZNIUMDBE AND WHIZNIUMSBE

A. Motivation
The principal motivation for designing Whiznium was to

relieve the developer of work in multi-programming language
settings typical for FPGA-SoC’s, especially with regard to

functionality that is repeated from project to project. The
vendor-specific low-level synthesis and placement tools (for the
FPGA area) or compilers (for the MCU/CPU area), which get
the best possible performance out of the target hardware, were
not to be replaced. Also a new "one-size-fits-all" programming
language would not have done justice to the task of realizing
heterogeneous embedded software projects. The aspects that
occur are too different and the existing languages have prevailed
not least because they guarantee optimized results for their
specific application aspect.

As a result, the chosen developer-friendly approach, which
promises massive time savings while respecting existing
programming languages and aspect-specific best practices, was
model-based source code generation. It was subsequently
implemented in WhizniumDBE and WhizniumSBE.

B. Software design process
The goal of the software design process with Whiznium is to

enable the tool to write a synthesizable or compile-ready source
code tree that covers all project aspects. For this purpose,
Whiznium is given a software description in the form of aspect-
specific model files, the level of detail of which usually increases

Figure 1 Overview software projects with WhizniumDBE & SBE

as the project progresses. Accordingly, the output of Whiznium
at the beginning of a project is limited to a skeleton of source
code files, which is filled by manual additions, classical
debugging and iteration of the model information, coupled with
repeated Whiznium calls, until all project requirements are met.

Whiznium is divided into WhizniumDBE (Device Builder's
Edition [1]) for FPGA and MCU code, and WhizniumSBE
(Service Builder's Edition [2]) for multi-core compatible
embedded Linux software. Both tools (... are WhizniumSBE
projects, an indication of the universality of the WhizniumSBE
concept, and ...) each follow their own sequences of
progressively accumulating project information, from coarse to
fine, in an SQL database.

The beginning and end of the WhizniumDBE sequence
(Figure 2) are well known from FPGA projects, but are also used
here in a modified form for MCU projects: from a hierarchical
module structure, there are intermediate steps such as commands
that the processing system (PS) can trigger in programmable
logic (PL), as well as algorithms that can be parallelized, until
reaching the fine structure of ports, signals and processes.

A key feature of Whiznium is the built-in ability - besides
manual imports - to automatically derive elements of the next
finer level. An example of this is the automatic generation of
handshake fine structure for command calls between FPGA
modules. In addition, custom module templates can be
incorporated, which, thanks to access to the SQL database, can
engage with the WhizniumDBE sequence based on parameters

- in extensible, open C++ code. This possibility is significantly
more powerful than just using generics in VHDL modules.

The WhizniumSBE sequence (Figure 3) has more aspects to
consider than its WhizniumDBE counterpart. It begins with
information on target platforms and components (see below), the
structure of an underlying relational SQL database (usually
SQLite [3] for embedded projects) and a rough outline of the
user interface (UI). The next finer level describes, for example,
the distribution of arithmetic operations to separate executables
or the structure of the UI down to the level of individual controls.
Finally, the hierarchical job tree describes a structure of C++
classes whose objects are responsible for individual hardware,
algorithm, or UI aspects at runtime. State machines, inter-job
communication and XML/JSON data blocks for the MVC-
compliant UI can also be specified here.

After all relevant project information has been gathered in
the WhizniumDBE or WhizniumSBE SQL databases, source
code trees are generated in a simple but robust process. A large
number of template files are used, which are individualized with
placeholders and insertion points for resulting code files. In the
case of WhizniumDBE, template files can also be specific for
module templates.

As previously mentioned, hand-written code exists
symbiotically within automatically generated source code trees.
Therefore, starting with the second call of Whiznium for a
project or with the first model iteration, manual content of the
existing source code tree is extracted from insertion points
(comments in the respective programming language) before
being reinserted into the new version’s source code tree.
Comprehensive syntax checks secure this process.

C. WhizniumDBE
WhizniumDBE can generate the following components:

• device access library: C++ code for the PS, which
enables non-blocking calling of PL commands and data
transfers from/to the PL

• easy model device access library: C++ code for the above
functionality, but with serial execution

• FPGA code: VHDL code and constraints for PL, divided
into modules, with PS-callable commands and data
transfers. Optionally with FPGA instruction cache

• MCU code: C code optimized for minimal size, which
emulates the event-based logic of PL

D. WhizniumSBE
WhizniumSBE can generate these components:

• main engine: multi-core compatible C++ code with SQL
database connection, which on the one hand reliably
accesses hardware subsystems and on the other hand
manages sessions for external access. A libmircohttpd-
based HTTPS server and optionally an OPC UA server
and a DDS publisher are included for M2M
communication

Figure 2 Sequence of import/generation steps WhizniumDBE

Figure 3 Sequence of import/generation steps WhizniumSBE

www.embedded-world.eu

• operation engines: C++ code for satellite executables that
can execute remote procedure calls (RPCs). Connection
to the main engine via HTTP

• combined engine: a combination of the functionalities of
the main engine and operation engines if no cluster
architecture or heterogeneous multi-core architecture is
available

• database access library: C++ code for easy access to the
project MySQL/PostgreSQL/SQLite database

• web app user interface files: HTML5 and JavaScript
code for multilingual web-based UI. Detailed access
management according to user levels

• Vue.js app: a more modern-looking implementation of
the web-based UI

• API library: C++ code to enable machine-to-machine
control based on UI communication. This simplifies
integration into native Linux applications

• C# API library: same as above for integration into native
Windows applications

• Swift API package: same as above for integration into
native macOS applications

• Java API package: same as above for integration into
Java applications

III. DEMO PROJECT
A tabletop 3D laser scanner with a turntable on the one hand

and a 5MP camera and line lasers on the other (Figure 4, [4]),
whose logic is implemented on an FPGA SoC [5], serves as
demo project. FPGA SoC’s ideally embody the fusion of low-
level and high-level embedded software, as PS and PL are
combined on one piece of silicon. Whiznium however is also
suitable for pure PS/PL systems, as well as for those where PS
and PL are found on separate chips or circuit boards.

IV. FURTHER WHIZNIUM CONCEPTS
Whiznium emerged from everyday developer work, so the

following requirements relevant to developers have been
considered:

• Whiznium relies on few but well-established and open
technologies: libxml2, libmicrohttpd, [one of]
MySQL/PostgreSQL/SQLite, [optional] Vue.js

• thanks to the "all code in plain sight" principle, all
functionality is easy to understand

• projects started with Whiznium can be further developed
independently

• Whiznium is compatible with versioning via Git,
especially for source tree iterations

• generated code is optimized for good readability and has
a modular structure. This facilitates testability and
maintenance; the usual debugging tools can be used

• WhizniumDBE and WhizniumSBE are Open Source.
This enables user-specific, also closed source, extensions

V. CONCLUSION AND OUTLOOK
A methodology was presented to develop powerful software

for modern embedded systems in a time-saving manner. The
model-based approach of the Whiznium tools covers most
aspects occurring in FPGA-SoC systems with a high level of
detail.

Whiznium is a living project which, thanks to its openness,
can easily incorporate market trends, be it new hardware
platforms or new programming approaches, into its model
description and source code generation. Contributions of
practical relevance from the community are always welcome.

REFERENCES

[1] Whiznium Device Builder's Edition on GitHub:
https://github.com/mpsitech/wdbe-WhizniumDBE

[2] Whiznium Service Builder's Edition on GitHub:
https://github.com/mpsitech/wznm-WhizniumSBE

[3] SQLite project home page: https://www.sqlite.org/index.html
[4] Whiznium StarterKit on GitHub: https://github.com/mpsitech/wzsk-

Whiznium-StarterKit
[5] Microchip PolarFire SoC FPGA's: https://www.microchip.com/en-

us/products/fpgas-and-plds/fpgas/polarfire-fpgas/polarfire-soc-fpgas

(all links accessed on May 29, 2022)

Figure 4 Tabletop 3D laser scanner hardware and software (excerpt)

