
A MODEL-BASED APPROACH
TO MASTERING COMPLEXITY
IN FPGA-SoC SOFTWARE DEVELOPMENT

Alexander Wirthmüller
aw@mpsitechnologies.com

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

• Diploma in Electrical Engineering

• Based in Munich

• R&D Engineer at Mynaric (FPGA-based error-correction
algorithms for free-space optical laser communications)

• Founder and Director at MPSI Technologies

• MPSI Technologies: make Embedded Software development
more fun by replacing repetitive tasks by model-based source
code generation

Introduction
Me and MPSI Technologies

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

FPGA-SoC landscape
Devices and applications

Product lines
Selection discussed here: CPU complex can run Embedded Linux

• from 2011: Zynq 7000 with Dual 32-bit ARM CPU and SRAM-
based FPGA, internally connected via AXI

• from 2016: Zynq UltraScale+ with Quad 64-bit ARM CPU and
additional real-time cores / accelerators

• from 2012: CycloneV with Dual 32-bit ARM CPU
• from 2016: Stratix 10 with Quad 64-bit ARM CPU

• from 2019: PolarFire SoC with Quad 64-bit RISC-V CPU and
antifuse-based FPGA

Typical applications
• classical FPGA applications where additional

high-level control is of advantage

• ”data reduction” or pre-processing of high-
bandwidth sources

• cameras: binning, pixel-level filters,
compression, feature and object detection

• ADC’s: spectral analysis, DSP filters

• clock-precise signaling for mixed-signal ASIC’s

• not considered here: data center and hardware
acceleration applications

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

The FPGA-SoC software full stack
From VHDL to C++ to HTTPS and XML

Microchip PolarFire SoC Block Diagram

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Demo project: hardware
Tabletop 3D laser scanner

• turntable with with stepper motor control

• 5 megapixel camera with MIPI CSI interface

• two intensity-modulated line lasers

• Microchip PolarFire SoC Icicle kit with
adapter PCB

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Demo project: software
From camera raw data to point cloud display in web browser

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Demo project: software
From camera raw data to point cloud display in web browser

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Demo project: software
From camera raw data to point cloud display in web browser

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Demo project: software
From camera raw data to point cloud display in web browser

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Embedded software model description
WhizniumDBE for FPGA layer, WhizniumSBE for Linux application software

• successive model composition within an SQL database using import (I) and generation (G) steps

• output of source code trees only thereafter

• text-based model files (”diffable”)

WhizniumDBE (Device Builder’s Edition)
• Modular structure (I)
• Command set and buffer transfers (I)
• Data flows and algorithms (I)
• Fine structure (G)
• Custom fine structure (I)
• Finalization (G)

WhizniumSBE (Service Builder’s Edition)
• Deployment information (I)
• Global features (I)
• Database structure (I)
• Basic user interface structure (I)
• Import/export structure (I)
• Operation pack structure (I)
• Custom jobs (I)
• User interface (G)
• Custom user interface features (I)
• Job tree (G)
• Custom job tree features (I)
• Finalization (G)

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Deep dive I: from C++ command to RTL finite state machine
Control of turntable stepper motor

• module definition, command definition, fine structure

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Deep dive I: from C++ command to RTL finite state machine
Control of turntable stepper motor

• module definition, command definition, fine structure

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Deep dive I: from C++ command to RTL finite state machine
Control of turntable stepper motor

• module definition, command definition, fine structure

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Deep dive I: from C++ command to RTL finite state machine
Control of turntable stepper motor

• module definition, command definition, fine structure

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Deep dive I: from C++ command to RTL finite state machine
Control of turntable stepper motor

• module definition, command definition, fine structure

• Linux side developer-facing: executable API method

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Deep dive I: from C++ command to RTL finite state machine
Control of turntable stepper motor

• module definition, command definition, fine structure

• Linux side developer-facing: executable API method

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Deep dive I: from C++ command to RTL finite state machine
Control of turntable stepper motor

• module definition, command definition, fine structure

• Linux side developer-facing: executable API method

• Linux side in background: translation into byte code and invocation of character device driver (AXI)

• FPGA side in background: reception and decoding of byte code in “host interface” module, CRC
evaluation

• FPGA side developer-facing: handshake signals

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Deep dive I: from C++ command to RTL finite state machine
Control of turntable stepper motor

• module definition, command definition, fine structure

• Linux side developer-facing: executable API method

• Linux side in background: translation into byte code and invocation of character device driver (AXI)

• FPGA side in background: reception and decoding of byte code in “host interface” module, CRC
evaluation

• FPGA side developer-facing: handshake signals

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Deep dive I: from C++ command to RTL finite state machine
Control of turntable stepper motor

• module definition, command definition, fine structure

• Linux side developer-facing: executable API method

• Linux side in background: translation into byte code and invocation of character device driver (AXI)

• FPGA side in background: reception and decoding of byte code in “host interface” module, CRC
evaluation

• FPGA side developer-facing: handshake signals

• FPGA side left for manual implementation: finite state machine reacting to command invocation

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Deep dive I: from C++ command to RTL finite state machine
Control of turntable stepper motor

• module definition, command definition, fine structure

• Linux side developer-facing: executable API method

• Linux side in background: translation into byte code and invocation of character device driver (AXI)

• FPGA side in background: reception and decoding of byte code in “host interface” module, CRC
evaluation

• FPGA side developer-facing: handshake signals

• FPGA side left for manual implementation: finite state machine reacting to command invocation

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Deep dive II: camera preview images on the move
FPGA-based binning, processing in C++ code and forwarding to the UI

• pixels arrive over four-lane MIPI CSI at 576Mbps per lane and get deserialized into a 10-bit RAW10
data stream at about 20fps

• four preview modes (2560 x 1280 to 160 x 120 RGB vs. 2048 x 1536 to 256 x 192 grayscale), manual
implementation using finite state machines and 2/4kB buffers

• ”buffer transfers” are besides “commands” the second functionality which can be generated for the
host interface

• polling in separate thread on host, insertion into ”job tree” via “call”

• generation of XML block containing image data, Base64 coded transmission

• reception in web browser via HTTPS/1.1 “long polling”, rendering in HTML5 <canvas/>

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Deep dive III: meta data and the “lowering” process in Whiznium
From SQL database structure to code and UI elements to XML/JSON blocks

• all WhizniumSBE applications are backed by a SQLite3 database

• “Database structure”: tables “Object group” (1:N) “Object” (1:N) “Snapshot” and corresponding
”Basic user interface”

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Deep dive III: meta data and the “lowering” process in Whiznium
From SQL database structure to code and UI elements to XML/JSON blocks

• all WhizniumSBE applications are backed by a SQLite3 database

• “Database structure”: tables “Object group” (1:N) “Object” (1:N) “Snapshot” and corresponding
”Basic user interface”

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Deep dive III: meta data and the “lowering” process in Whiznium
From SQL database structure to code and UI elements to XML/JSON blocks

• all WhizniumSBE applications are backed by a SQLite3 database

• “Database structure”: tables “Object group” (1:N) “Object” (1:N) “Snapshot” and corresponding
”Basic user interface”

• first “lowering” step: multi-locale UI elements, “queries”, “panels” and “controls”

• second “lowering” step: “blocks” and “dispatches” for engine <-> app communication

• code generation “database access library”

• code generation on engine side: classes for “cards”, ”panels” and ”queries” which at runtime
dynamically generate objects responsible for web UI sessions and react to user input

• code generation app side: HTML and JavaScript

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Conclusion demo project
The model-based approach pays off

• the maze of software
technologies relevant for FPGA-
SoC’s is cleanly covered by a
single, coherent method

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Whiznium concepts
Modularity, transparency and re-usability

• Whiznium is Open Source; the generated code is subject to no license restrictions

• Whiznium generates well-organized, human-readable source code trees which can be synthesized /
compiled “out-of-the-box”

• manual modifications are enabled through the concept of “insertion points”

• upon source code iteration (e.g. following model extension) manual modifications are carried over to
the next version

• generated code relies on few, well-proven external libraries, all of which are Open Source. Standards
are strictly followed

• WhizniumDBE features parametrized “module templates”. Besides corresponding VHDL files,
template-specific intervention in the WhizniumDBE master database through C++ code is possible

• WhizniumSBE features parametrized “capability templates”. Also here, template-specific intervention
in the WhizniumSBE master database through C++ code is possible

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Whiznium tools
Incorporation into existing developer workflows

• WhizniumSBE and WhizniumDBE are Linux-based ”daemons” (and [fun fact] WhizniumSBE projects),
which receive model information and send source code trees via HTTPS

• Java tools WhizniumDBE/SBE Bootstrap offer initialization of WhizniumDBE/SBE with project
information stored in a local folder structure

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Whiznium tools
Incorporation into existing developer workflows

• WhizniumSBE and WhizniumDBE are Linux-based ”daemons” (and [fun fact] WhizniumSBE projects),
which receive model information and send source code trees via HTTPS

• Java tools WhizniumDBE/SBE Bootstrap offer initialization of WhizniumDBE/SBE with project
information stored in a local folder structure

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Whiznium tools
Incorporation into existing developer workflows

• WhizniumSBE and WhizniumDBE are Linux-based ”daemons” (and [fun fact] WhizniumSBE projects),
which receive model information and send source code trees via HTTPS

• Java tools WhizniumDBE/SBE Bootstrap offer initialization of WhizniumDBE/SBE with project
information stored in a local folder structure

• Java tools WhizniumDBE/SBE Iterator help transform local source code trees from the current
version to the next. Here, API calls replace manual UI clicks

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Whiznium tools
Incorporation into existing developer workflows

• WhizniumSBE and WhizniumDBE are Linux-based ”daemons” (and [fun fact] WhizniumSBE projects),
which receive model information and send source code trees via HTTPS

• Java tools WhizniumDBE/SBE Bootstrap offer initialization of WhizniumDBE/SBE with project
information stored in a local folder structure

• Java tools WhizniumDBE/SBE Iterator help transform local source code trees from the current
version to the next. Here, API calls replace manual UI clicks

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Whiznium tools
Incorporation into existing developer workflows

• WhizniumSBE and WhizniumDBE are Linux-based ”daemons” (and [fun fact] WhizniumSBE projects),
which receive model information and send source code trees via HTTPS

• Java tools WhizniumDBE/SBE Bootstrap offer initialization of WhizniumDBE/SBE with project
information stored in a local folder structure

• Java tools WhizniumDBE/SBE Iterator help transform local source code trees from the current
version to the next. Here, API calls replace manual UI clicks

• WhizniumDBE code can be developed using the vendor-provided tools, e.g. Vivado, Quartus, Libero
SoC or Simplicity Studio

• WhizniumSBE code can be (cross-)compiled using the industry-standard tool chains gcc/Clang.
(Remote-)Debugging can be done using e.g. VS Code

• the Yocto project helps building custom Embedded Linux distributions for each FPGA-SoC platform.
WhizniumSBE projects run on those distributions

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Resources

• both Whiznium tools are available free of charge on GitHub, including installation instructions

https://github.com/mpsitech/The-Whiznium-Documentation

• the Open Source StarterKit ist available for various hardware platforms, with vendor-specific
instructions also available on GitHub

• “The Whiznium Developer Experience” on YouTube is an ongoing Webinar series on Whiznium

• for advanced users WhizniumSBE/DBE cheat sheets are available which serve as reference for writing
model files

https://github.com/mpsitech/The-Whiznium-Documentation
https://github.com/mpsitech
https://www.youtube.com/playlist?list=PLYrNHebjziwvFniIOJc_9w1Mq561VqArv

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development embedded world Conference 2022

Don’t hesitate to reach out
aw@mpsitechnologies.com

Thank You!

mailto:aw@mpsitechnologies.com

