A MODEL-BASED APPROACH TO MASTERING COMPLEXITY IN FPGA-SoC SOFTWARE DEVELOPMENT

Alexander Wirthmüller aw@mpsitechnologies.com

Introduction Me and MPSI Technologies

- Diploma in Electrical Engineering
- Based in Munich
- R&D Engineer at Mynaric (FPGA-based error-correction algorithms for free-space optical laser communications)
- Founder and Director at MPSI Technologies
- MPSI Technologies: make Embedded Software development more fun by replacing repetitive tasks by model-based source code generation

FPGA-SoC landscape

Devices and applications

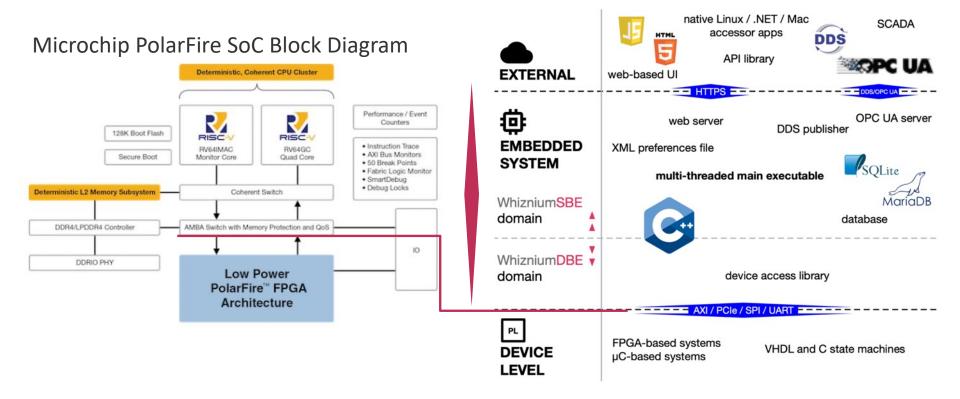
Product lines

Selection discussed here: CPU complex can run Embedded Linux

AMDA ZYNQ.

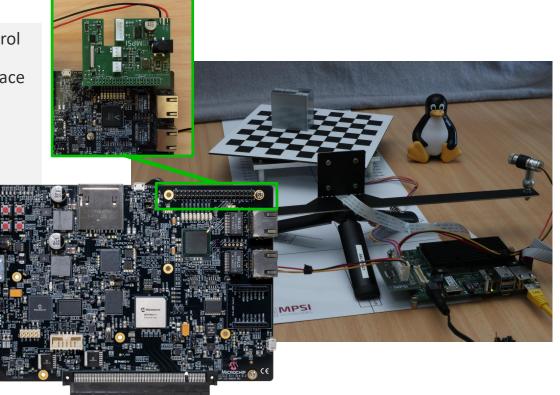
- from 2011: Zynq 7000 with Dual 32-bit ARM CPU and SRAMbased FPGA, internally connected via AXI
- from 2016: Zynq UltraScale+ with Quad 64-bit ARM CPU and additional real-time cores / accelerators

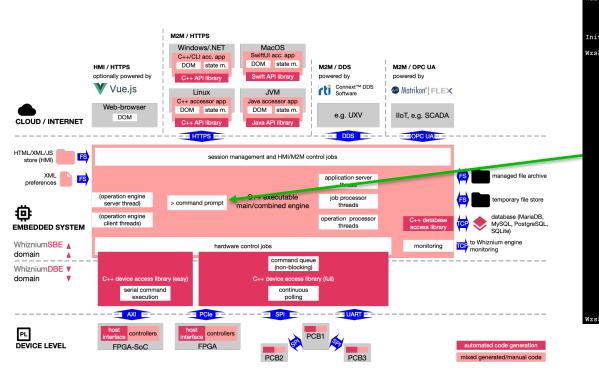
- from 2012: CycloneV with Dual 32-bit ARM CPU
- from 2016: Stratix 10 with Quad 64-bit ARM CPU

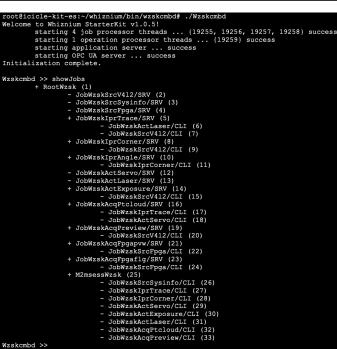

• from 2019: PolarFire SoC with Quad 64-bit RISC-V CPU and antifuse-based FPGA

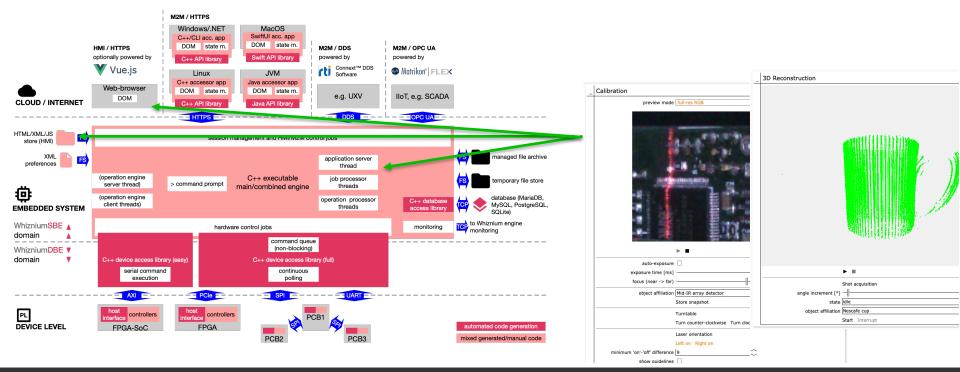
Typical applications

- classical FPGA applications where additional high-level control is of advantage
- "data reduction" or pre-processing of highbandwidth sources
- cameras: binning, pixel-level filters, compression, feature and object detection
- ADC's: spectral analysis, DSP filters
- clock-precise signaling for mixed-signal ASIC's
- not considered here: data center and hardware acceleration applications

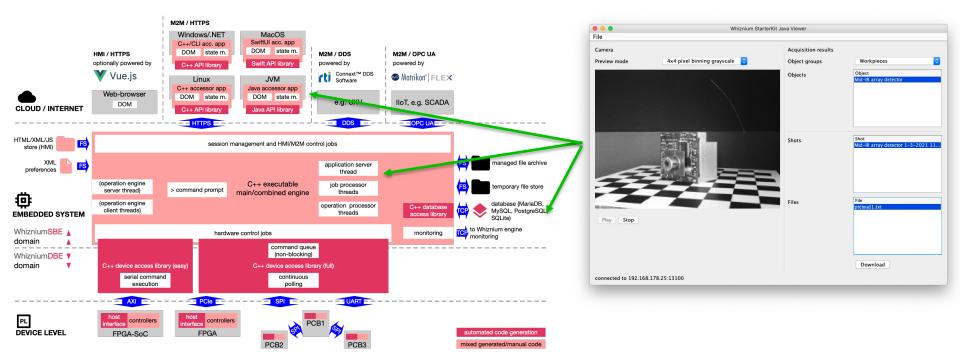

The FPGA-SoC software full stack From VHDL to C++ to HTTPS and XML


Demo project: hardware Tabletop 3D laser scanner

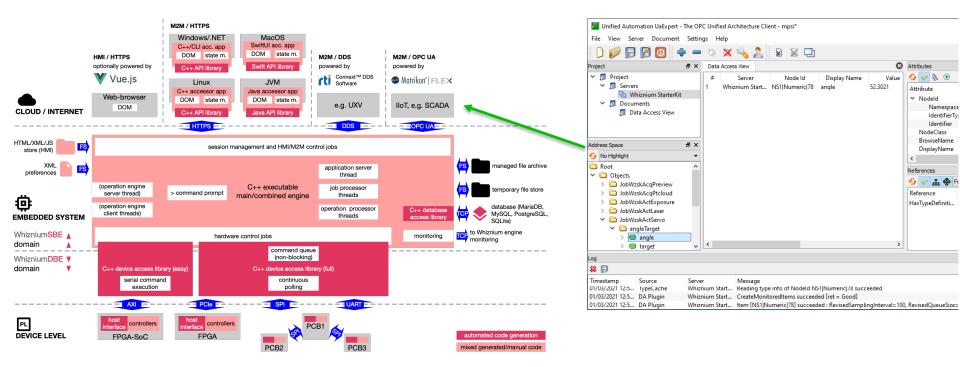

- turntable with with stepper motor control
- 5 megapixel camera with MIPI CSI interface
- two intensity-modulated line lasers
- Microchip PolarFire SoC Icicle kit with adapter PCB


From camera raw data to point cloud display in web browser

From camera raw data to point cloud display in web browser



A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development


embedded world Conference 2022

From camera raw data to point cloud display in web browser

From camera raw data to point cloud display in web browser

Embedded software model description

WhizniumDBE for FPGA layer, WhizniumSBE for Linux application software

- successive model composition within an SQL database using import (I) and generation (G) steps
- output of source code trees only thereafter
- text-based model files ("diffable")

WhizniumDBE (Device Builder's Edition)

- Modular structure (I)
- Command set and buffer transfers (I)
- Data flows and algorithms (I)
- Fine structure (G)
- Custom fine structure (I)
- Finalization (G)

WhizniumSBE (Service Builder's Edition)

- Deployment information (I)
- Global features (I)
- Database structure (I)
- Basic user interface structure (I)
- Import/export structure (I)
- Operation pack structure (I)
- Custom jobs (I)
- User interface (G)
- Custom user interface features (I)
- Job tree (G)
- Custom job tree features (I)
- Finalization (G)

• module definition, command definition, fine structure

lexWdbeMo	ll v1.1.14							
melMUnit	srefSilRefWdbeMUnit	sref	Title	Easy	srefKToolch	Comment		
fpga	mpfs250t-fcvg484	iccl	Microchip PolarFire Soc Icicle kit	true	libero			
	ImelMModule.sreflxVBa	hsrefSupRefWdl	srefTplRefWdbeMModule	sref	Comment			
	wrp		mpfs_ip_AXI_v1_0	iccl_ip_AXI				
	top	iccl_ip_AXI	top_mchp_v1_0	top				
		ImelAMModule	Val					
		fExtclk	125000					
		extresetNNotP	true					
	ImelAMMod		Par.end					
		ImelMGeneric.s	Defval					
		fMclk	50000					
		ImelMGeneric.e	nd					
ectr iccl_ip_AXI;top		iccl_ip_AXI;top		step	stepper mot	or control (28	BYJ-48 via Ul	N2003)
	ImelMModule.end							
melMUnit.	end							

lexW	dbeCsx v1.1.9										
Imell	MUnit.sref										
iccl											
	ImeIMModule.hsrefSu	ip sref									
	iccl_ip_AXI;top	step									
		ImelM	Controller.								
		^									
			ImelMVector2.sreflxVBase	sref	srefsKOption						
			tixlin	VecVWskdlcclStepState	filfed;notit						
				ImelMVectoritem2.sref	Title	Comment					
				idle							
				move							
				ImelMVectoritem2.end							
			ImelMVector2.end								
			ImeIMCommand2.refNum	sref	sreflxVRettype	sreflvrRefWd	srefRvrRe	f srefRerR	Comment		
			0	moveto	void						
				ImelAMCommandInvpar2.sref	sreflxWdbeVPartype	srefRefWdbe	Length	Defval	srefRefWdbe	Comment	
				angle	uint16			0		in stepper motor ste	eps (4096 per rev.)
				Tstep	uint8			150		in tkclk clocks: rps =	10000 / (Tstep * 64 * 64)
				ImelAMCommandInvpar2.end							
			ImeIMCommand2.end								
		ImeIMController.end									
	ImeIMModule.end										
Imell	MUnit.end										

Deep dive I: from C++ command to RTL finite state machine

Control of turntable stepper motor

lexWo	beFin v1.1.9												
ImelN	1Unit.sref												
iccl													
	ImeIMModule.hsrefSup	sref											
	iccl_ip_AXI;top	step											
		ImeIMProcess.sref	clkSrefWdbe	asrSrefWdbeMS	Falling	Syncrst	Extip	Comment					
		ор	mclk	reset	false	state(init) or (sta	false	main operation					
			ImeIMFsm.										
			^										
				ImeIMFsmstate	sref	Extip	Comment						
				0	init	false							
					ImelAMFsm	Cond1	lp1	Cond2	lp2	Cond3	lp3	Cond4	lp4
					inv	reqInvMoveto	moveto						
					inv	reqInvSet	set						
					inv	reqInvZero	zero						
					ready	else							
					ImelAMFsm	stateStep.end							
				0	ready	false							
					ImelAMFsm	Cond1	lp1	Cond2	lp2	Cond3	lp3	Cond4	lp4
					runB	Tstep/=0		not targetNotSteady and rng	steady				
					runB	Tstep/=0		targetNotSteady and not atTarget	target				
					ready	Tstep/=0		else	hold				
					ImelAMFsm	stateStep.end							
				ImeIMFsmstate	.end								
			ImelMFsm.e	nd									
		ImeIMProcess.end											
	ImelMModule.end												
ImelN	1Unit.end												

- module definition, command definition, fine structure
- Linux side developer-facing: executable API method

CtrWskdlcclStep.h - wskd module definit 🗳 EXPLORER C CtrWskdlcclStep.h 2 • Ш … WSKD C C V Ø ezdevwskd > UntWskdlccl > C CtrWskdlcclStep.h > 4 CtrWskdlcclStep /** > _mdl * \file CtrWskdIcclStep.h Linux side deve > _rls 3 * step controller (declarations) * \copyright (C) 2016-2020 MPSI Technologies GmbH v ezdevwskd * \author Alexander Wirthmueller (auto-generation) > UntWskdArty * \date created: 23 Oct 2021 VuntWskdlccl */ 8 // IP header --- ABOVE CtrWskdlcclCamacq.cpp C CtrWskdlcclCamacq.h 10 #ifndef CTRWSKDICCLSTEP_H 11 #define CTRWSKDICCLSTEP_H G CtrWskdIcclCamif.cpp 12 C CtrWskdlcclCamif.h 13 #include "Wskd.h" 14 CtrWskdlcclFeatdet.cpp 15 #define CmdWskdIcclStepGetInfo CtrWskdIcclStep::CmdGetInfo C CtrWskdlcclFeatdet.h 16 17 #define VecVWskdIcclStepCommand CtrWskdIcclStep::VecVCommand CtrWskdlcclLaser.cpp 18 #define VecVWskdIcclStepState CtrWskdIcclStep::VecVState C CtrWskdlcclLaser.h 19 20 /** CtrWskdlcclState.cpp 21 * CtrWskdIcclStep C CtrWskdlcclState.h 22 */ 23 class CtrWskdIcclStep : public CtrWskd { CtrWskdlcclStep.cpp 24 C CtrWskdlcclStep.h 25 // ... 26 G CtrWskdlcclTkclksrc.cpp 27 public: C CtrWskdlcclTkclksrc.h 28 // ... 29 G UntWskdlccl_vecs.cpp 30 static Dbecore::Cmd* getNewCmdGetInfo(); C UntWskdlccl_vecs.h 31 void getInfo(uint8_t& tixVState, uint16_t& angle); C UntWskdlccl.cpp 32 33 static Dbecore::Cmd* getNewCmdMoveto(); C UntWskdlccl.h 34 void moveto(const uint16 t angle, const uint8 t Tstep); 35 > UntWskdMcep 36 static Dbecore::Cmd* getNewCmdSet(); > UntWskdUbdk 37 void set(const bool rng, const bool ccwNotCw, const uint8_t Tstep); C DevWskd.h 38 39 static Dbecore::Cmd* getNewCmdZero(); G Wskd.cpp 40 void zero(); C Wskd.h 41 42 }; > fpgawskd 43 > mcuwskd 44 #endif

- module definition, command definition, fine structure
- Linux side developer-facing: executable API method
- Linux side in background: translation into byte code and invocation of character device driver (AXI)
- FPGA side in background: reception and decoding of byte code in "host interface" module, CRC evaluation
- FPGA side developer-facing: handshake signals

- module definition,
- Linux side develop
- Linux side in backg
- FPGA side in backg evaluation
- FPGA side develop

ad 24 getInfoTixVState: out std_logic/vector(7 downto 0); byhd 26 byhd 26 yrl_Ovhd 27 ackInvNoveto: out std_logic; advid 28 yrl_Ovhd 30 ackInvNoveto: out std_logic; 33 reqInvSet: in std_logic; 34 ackInvSet: out std_logic; 35 setTstep: in std_logic/vector(7 downto 0); 36 setTstep: in std_logic/vector(7 downto 0); 37 setTstep: in std_logic/vector(7 downto 0); 38 setTstep: in std_logic/vector(7 downto 0); 39 reqInvSet: in std_logic/vector(7 downto 0); 31 ackInvSet: out std_logic; 32 setTstep: in std_logic/vector(7 downto 0); 33 setTstep: in std_logic/vector(7 downto 0); 34 ackInvSet: out std_logic; 35 setTstep: in std_logic/vector(7 downto 0); 36 setTstep: in std_logic; 37 setTstep: in std_logic; 38 setTstep: in std_logic; 39 reqInvZero: in std_logic; 43 step1: out std_logic;			Step.vhd — wskd
<pre>1 - file Step.vhd 2 - file Step.vhd 3 - copyright: (C) 2016-2020 MPSI Technologies Gabi 4 - author: Catherine Johnson (auto-generation) 5 - date created: 1 Dec 2020 6 - IP header A0002 1 Ubrary isee; 9 use isee.std.logic,1164.01; 10 use work.Decore.all; 10 use work.Decore.all; 11 use work.Decore.all; 12 use work.Decore.all; 13 use work.Decore.all; 14 use work.Decore.all; 15 entity Step is 16 port (17 fft(k: natural range 1 to 1000000 := 50000 in kHz 17 j; 16 port (17 fft(k: natural range 1 to 1000000 := 50000 in kHz 18 j; 19 port (10 fft(k: natural range 1 to 1000000 := 50000 in kHz 19 port (10 fft(k: natural range 1 to 1000000 := 50000 in kHz 10 j; 10 port (10 fft(k: natural range 1 to 1000000 := 50000 in kHz 10 j; 10 port (11 fft(k: natural range 1 to 1000000 := 50000 in kHz 12 ttclk: in std_logic; 13 ectinofworts: in std_logic; 14 ectin std_logic; 15 eftingi: in std_logic; 16 extInvMoveto: un std_logic; 17 entity Step: in std_logic; 18 extInvMoveto: in std_logic; 19 movetoTatep: in std_logic; 10 extInvMoveto: in std_logic; 10 extInvMoveto: in std_logic; 10 extInvMoveto: in std_logic; 10 extInvMoveto: in std_logic; 10 extInvSter: in std_logic; 11 extInvSter: in std_logic; 12 extInvSter: in std_logic; 13 extInvSter: in std_logic; 14 extInvSter: in std_logic; 15 extInvSter: in std_logic; 16 step3: out std_logic; 17 extInvSter: in std_logic; 18 extInvSter: in std_logic; 19 extInvSter: in std_logic; 10 extInvSter: in std_logic;</pre>			C CtrWskdlcclStep.h 2
<pre>4 author: (atherine Johnson (auto-generation) 5 date created: l Dec 2020 6 IP header ABOVE 7 Use work.Decore.all; 10 use ieee.numeric_std.all; 11 use work.Decore.all; 12 use work.Decore.all; 13 use work.Decore.all; 14 entity Step is 15 entity Step is 16 entity Step is 16 entity Step is 17 entity Step is 18 entity Step is 19 entity Step is 19 entity Step is 19 entity Step is 10 entity Ste</pre>		B, B, V ₽	1 file Step.vhd 2 Step easy model controller implementation
<pre> ibrary ieee; we ieee.numeric_std.all; we we ieee.numeric_std.all; we work.Decore.all; we work.Decore.all; we work.Iccl.all; entity Step is pertit (fmcki: natural range 1 to 1000000 := 50000 in kHz }; fmcki: natural range 1 to 1000000 := 50000 in kHz }; molk: in std_logic; molk: in std_logic; ackInvise: out std_logic,vector(7 downto 0); regInvKoveto: out std_logic; ackInvise: in std_logic; std[logic; ackInvise: in std_logic; std[logic; std[log</pre>		•	 4 author: Catherine Johnson (auto-generation) 5 date created: 1 Dec 2020
B library ices; 9 use ices.tul_opic_l164.all; 10 use ices.tul_opic_l164.all; 11 use work.Decore.all; 12 use work.Decore.all; 13 use work.Decore.all; 14 entity Step is 15 entity Step is 16 peeric (17 'Mtk: natural range 1 to 100000 := 50000 in kHz 18 2 19 port (10 rest: in std_lopic; 11 use work.listic.out std_lopic_vector(7 downto 0); 11 getInfoixVState: out std_lopic_vector(13 downto 0); 11 movetoAngle: in std_lopic_vector(13 downto 0); 12 reqInvMoveto: in std_lopic; 13 movetoState; in std_lopic; 14 3 15 setFiste; in std_lopic; 16 3 16 3 17 reqInvSet: in std_lopic; 18 setFiste; in std_lopic; 19 reqInvSet: in std_lopic; 10.vhd 3 10			
O use isee.std_logic_1164.01; is 0 use isee.numeric_std.01; is 0 use work.Bcc.er.01; is 0 use work.Iccl.01; is 0 entity Step is generic (0 mCk: natural range 1 to 1000000 := 50000 — in kHz is 0 port (is 0 getInfoTixVState: out std_logic; vector(7 downto 0); id 22 tkckk: in std_logic; id 23 getInfoTixVState: out std_logic; vector(7 downto 0); id 24 getInfoTixVState: out std_logic; vector(15 downto 0); id 25 regInvNoveto: out std_logic; id 26 regInvNoveto: out std_logic; id 26 regInvNoveto: out std_logic; id 30 movetOnTite; in std_logic; id 11 getInfoRingVector(15 downto 0); id 12 regInvZero: in std_logic; id 13 movetOnTite; in std_logic; id 14 istep: out std_logic; id setTstap: in st			
<pre>1</pre>	0		
12 use work.Dbccore.all; 13 use work.Dcclall; 14 entity Step is 15 entity Step is 16 pencic (17 / McK: natural range 1 to 1000000 := 50000 in kHz 18 21 19 port (14 22 15 ecti: in std_logic; 16 22 17 / McK: in std_logic, vector(7 downto 0); 28 getInfoIxWState: out std_logic_vector(7 downto 0); 29 reqInMoveto: in std_logic, vector(15 downto 0); 20 reqInMoveto: out std_logic; 21 reqInMoveto: out std_logic; 22 reqInMoveto: out std_logic; 23 reqInvSet: in std_logic; 24 setFiste: in std_logic; 25 setFiste: in std_logic; 26 setFiste: in std_logic; 27 reqInvSet: in std_logic; 28 setFiste: in std_logic; 29 reqInvSet: in std_logic; 30 reqInvZero: in std_logic; 31 setFiste: in std_logic; 32 reqInvZero: in std_logic; 33 reqInvZero: in std_logic; 34 stepI: out std_logic; 35 stepI: out std_logic; <td< td=""><td>c .</td><td></td><td></td></td<>	c .		
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii			
id entity Step is id generic (if (%)			
16 generic i 17 MCLK: anzural range 1 to 1000000 := 50000 in kHz 18); 19 port (12 reset: in std_logic; 14 22 15 reset: in std_logic; 16 22 17 relnfv5ixVState: out std_logic; vector(7 downto 0); 18 23 19 getInfoIxVState: out std_logic; vector(15 downto 0); 10 25 10 26 10 27 10 28 10 28 11 movetoAngle: in std_logic; vector(15 downto 0); 28 movetoStage: in std_logic; 29 movetoStage: in std_logic; 20.Vhd 33 23 reqInvSet: in std_logic; 34 ackInvSet: in std_logic; 35 setTste: in std_logic; 36 setTste: in std_logic; 37 setCowlot: in std_logic; 38 setTste: in std_logic; 39 reqInvZero: unt std_logic; 39 reqInvZero: unt std_logic; 34			
1 <pre> f Mt(k: natural range 1 to 1000000 := 50000 in kHz in kHz if port (</pre>			
18); 19 port (19 port (20 rest: in std_logic; 21 mclk: in std_logic; 22 tkclk: in std_logic; 23 getInfoIxWState: out std_logic; 24 getInfoIxWState: out std_logic; 25 getInfoIxWState: out std_logic; 26 getInfoIxWState: out std_logic; 27 realnMveto: out std_logic; 28 movetOAngle: in std_logic; 29 movetOAngle: in std_logic; 20 movetOAngle: in std_logic; 33 reqInvSet: in std_logic; 34 setFing: in std_logic; 35 setFing: in std_logic; 36 setFing: in std_logic; 37 setCaNetCu: in std_logic; 38 setFing: in std_logic; 39 reqInvZero: unt std_logic; 41 ackInvZero: unt std_logic; 42 stepI: out std_logic; 43 stepI: out std_logic; 44 stepI: out std_logic; 45 stepB: out std_logic; 46			
ind ind			
20 <pre>regin: in std_logi; mclk: in std_logi; 22 1d 23 21 mclk: in std_logi; 22 1d 24 24 getInfoIxWState: out std_logi; vector(7 downto 0); 34 1d 25 1d 26 1d 27 1d 28 1d 26 1d 27 1d 28 1d 38 1d 39 1d 34 25_AXLvhd 35 25_AXLvhd 36 26 setFing: in std_logic/vector(7 downto 0); 37 setCawlotk: in std_logic; 38 setFing: in std_logic; 39 reqInvZero: in std</pre>			
i 22 tkclk: in std_logic; id 23 getInfoTixVState: out std_logic,vector(7 downto 0); id 25 getInfoAngle: out std_logic,vector(15 downto 0); ivvid 26 reqInVMoveto: in std_logic; ivvid 28 ackInvMoveto: out std_logic; ivvid 28 ackInvMoveto: out std_logic; ivvid 38 movetoTstep: in std_logic,vector(7 downto 0); ivvid 38 reqInvSers: in std_logic,vector(7 downto 0); ivvid 38 setEng: in std_logic; ivvid 39 reqInvZero: in std_logic; ivvid ivvid_logic; ststd_logic; ivvid			
dd 24 getInfoTixVState: out std_logic_vector(7 downto 0); ydd 25 getInfoTixVState: out std_logic_vector(15 downto 0); ylowhd 26 reqInvNoveto: in std_logic; ackInvNoveto: out std_logic; ackInvNoveto: out std_logic; yl_Ovhd 30 movetOAngle: in std_logic; 32 reqInvSet: in std_logic; 33 reqInvSet: in std_logic; 34 ackInvSet: out std_logic; 35 setTeng: in std_logic,vector(7 downto 0); 36 setTeng: in std_logic,vector(7 downto 0); 37 setTeng: in std_logic,vector(7 downto 0); 38 setTstep: in std_logic; 39 reqInvZero: in std_logic; 40 44 41 ackInvZero: out std_logic; 42 step1: out std_logic; 43 step2: out std_logic; 44 step2: out std_logic; 45 step3: out std_logic; 46 step3: out std_logic; 47 stateOp_d0g: out std_logic; 48 step3: out std_logic; 49 j; 50 end Step;			<pre>21 mclk: in std_logic;</pre>
Main 24 getInfoInVState: out std_logic_vector(7 downto 0); getInfoAngle: out std_logic; ackInvMoveto: out std_logic; ackInvMoveto: out std_logic; ackInvMoveto: out std_logic; ackInvMoveto: out std_logic; ackInvSter: in std_logic_vector(7 downto 0); ackInvSter: in std_logic; ackInvSter: in std_logic/vector(7 downto 0); setSAXLvhd S_AXLvhd 36 setInvZero: in std_logic; ackInvZero: out std_logic; ackInvZero: in std_logic; ackInvZero: out std_logic;	1		
dd 25 getInfoAngle: out std_logic_vector(15 downto 0); b,vhd 27 reqInvBoveto: in std_logic; 28 ackInvMoveto: out std_logic; 29 movetoAngle: in std_logic; 30 movetoAngle: in std_logic,vector(15 downto 0); 20.vhd 31 31 movetoAngle: in std_logic,vector(7 downto 0); 32 reqInvSet: in std_logic,vector(7 downto 0); 33 reqInvSet: in std_logic,vector(7 downto 0); 34 ackInvSet: out std_logic,vector(7 downto 0); 35 setTstep: in std_logic,vector(7 downto 0); 36 setTstep: in std_logic; 37 setCoNot(x: in std_logic; 38 setTstep: in std_logic; 39 reqInvZero: in std_logic; 40 45 41 ackInvZero: out std_logic; 42 stetPi: out std_logic; 43 stetPi: out std_logic; 44 stepPi: out std_logic; 45 stetPi: out std_logic; 46 stetPi: out std_logic; 47 stateOp_dog: out std_logic; 48 stateOp_dog: out std_logic; 49 ; 50 end Step;	nd		
Avhd 26 reqInvMoveto: in std_logic; 28 ackInvMoveto: out std_logic; 28 ackInvMoveto: out std_logic; 29 movetAngle: in std_logic_vector(15 downto 0); 20vhd 30 movetAngle: in std_logic_vector(7 downto 0); 20vhd 32 reqInvSerie in std_logic; 34 ackInvSet: out std_logic; ackInvSet: out std_logic; 35 setRmg: in std_logic_vector(7 downto 0); setStep: in std_logic; 36 setRmg: in std_logic_vector(7 downto 0); setStep: in std_logic; 37 setCoNotCv: in std_logic; setStep: in std_logic; 40 43 step1: out std_logic; 41 ackInvZero: out std_logic; 42 step1: out std_logic; 43 step1: out std_logic; 44 statelogic; 45 step3: out std_logic; 46 statelogic; 47 statelogic; 48 statelogic; 49 j; 50 architecture Step of Step is	nd		
27 reqInv6veto: in std_logic; ackInv6veto: out std_logic; ackInv6veto: out std_logic; all movetAngle: in std_logic,vector(15 downto 0); all movetoTstep: in std_logic,vector(7 downto 0); all movetoTstep: in std_logic; ackInvSet: out std_logic; ackInvSet: out std_logic; ackInvSet: in std_logic; ackInvSet: in std_logic; ackInvSet: out st	lybd		
v1_0vhd 30 movetoAngle: in std_logic_vector(15 downto 0); u_0vhd 31 movetoTstep: in std_logic; 32 reqInvSet: in std_logic; 33 reqInvSet: in std_logic; 34 ackInvSet: out std_logic; 35 setEng: in std_logic_vector(7 downto 0); 36 setFing: in std_logic_vector(7 downto 0); 37 setCoNctor: in std_logic; 38 setTstep: in std_logic; 39 reqInvZero: in std_logic; 40 step1: out std_logic; 41 ackInvZero: out std_logic; 42 step2: out std_logic; 43 step2: out std_logic; 44 step2: out std_logic; 45 step3: out std_logic; 46 step2: out std_logic; 59 end Step; 51 architecture Step of Step is			27 reqInvMoveto: in std_logic;
v1_0vhd 38 novet0Angle: in std_logic_vector(15 downto 0); novet0Angle: in std_logic_vector(7 downto 0); L_0vhd 32 reqInvSet: in std_logic; 33 ackInvSet: out std_logic; 34 ackInvSet: out std_logic; 35 setEng: in std_logic_vector(7 downto 0); 36 setEng: in std_logic_vector(7 downto 0); 37 setEcxWortCv: in std_logic; 38 setTiste: in std_logic; 39 reqInvZero: in std_logic; 40 43 step1: out std_logic; 41 ackInvZero: out std_logic; 42 step1: out std_logic; 43 step1: out std_logic; 44 step2: out std_logic; 45 step3: out std_logic; 46 stateOp_dog: out std_logic; 47 stateOp_dog: out std_logic; 48 stateOp_dog: out std_logic; 49); stateOp_dog: out std_logic; 51 architecture Step of Step is			
v1_0.vhd 31 movetoTstep: in std_logic_vector(7 downto 0); L_0.vhd 32 reqInvSet: in std_logic; 33 ackInvSet: out std_logic; 34 ackInvSet: out std_logic, 35 setRng: in std_logic,vector(7 downto 0); 36 setTstep: in std_logic,vector(7 downto 0); 37 setCsNctOx: in std_logic,vector(7 downto 0); 38 setTstep: in std_logic; 40 reqInvZero: in std_logic; 41 ackInvZero: out std_logic; 42 step1: out std_logic; 43 step2: out std_logic; 44 step2: out std_logic; 45 step4: out std_logic; 46 step2: out std_logic; 47 stateDp_dbg: out std_logic; 48 stateDp_dbg: out std_logic; 59 end Step; 51 architecture Step of Step is			
LOxhd 32 reaInvSet: in std_logic; 33 ackInvSet: out std_logic; 34 ackInvSet: out std_logic; 35 setEng: in std_logic_vector(7 downto 0); 36 setEration is std_logic_vector(7 downto 0); 37 setEration is std_logic_vector(7 downto 0); 38 setTstep: in std_logic_vector(7 downto 0); 39 reqInvZero: in std_logic; 40 43 step1: out std_logic; 41 ackInvZero: out std_logic; 42 step1: out std_logic; 43 step1: out std_logic; 44 step2: out std_logic; 45 step3: out std_logic; 46 stateOp_ddg: out std_logic; 47 stateOp_ddg: out std_logic; 50 end Step; 51 architecture Step of Step is	_v1_0.vhd		
34 ackInvSet: out std_logic; 35 setRop: in std_logic_vector(7 downto 0); 36 setRop: in std_logic_vector(7 downto 0); 37 setConvCrist in std_logic_vector(7 downto 0); 38 setTstep: in std_logic; 40 reqInvZero: in std_logic; 41 ackInvZero: out std_logic; 42 step1: out std_logic; 43 step1: out std_logic; 44 step2: out std_logic; 45 step3: out std_logic; 46 stateOp_ddg: out std_logic; 47 stateOp_ddg: out std_logic; 68 stateOp_ddg: out std_logic; 69 end Step; 51 architecture Step of Step is	0.vhd		
35 35 36 setRap: in std_logic_vector(7 downto 0); 37 setCoMiot(w: in std_logic_vector(7 downto 0); 38 setTstep: in std_logic_vector(7 downto 0); 39 reqInvZero: in std_logic; 40 reqInvZero: out std_logic; 41 ackInvZero: out std_logic; 42 step1: out std_logic; 43 step2: out std_logic; 44 step2: out std_logic; 45 step4: out std_logic; 46 step4: out std_logic; 47 stateDp_dbg: out std_logic; 48 stateDp_dbg: out std_logic, 99); 90 end Step; 91 architecture Step of Step is	_		
36 setRop: in std_logic_wetror(7 downto 0); 37 setCoNCtor(in std_logic_wetror(7 downto 0); 38 setTorNet(in std_logic_wetror(7 downto 0); 39 setTorNet(in std_logic_wetror(7 downto 0); 40 reqInvZero: in std_logic; 41 ackInvZero: und std_logic; 42 step1: out std_logic; 43 step2: out std_logic; 44 step2: out std_logic; 45 step3: out std_logic; 46 stateOp_dbg: out std_logic; 47 stateOp_dbg: out std_logic; 60 end Step; 51 architecture Step of Step is			
S_AXLvhd 37 setCoNector: in std_logic_vector(7 downto 0); 38 setTstp: in std_logic_vector(7 downto 0); 39 99 40 reqInvZero: in std_logic; 41 ackInvZero: out std_logic; 42 step1: out std_logic; 43 step2: out std_logic; 44 step2: out std_logic; 45 step2: out std_logic; 46 step2: out std_logic; 47 stateDp_dbg: out std_logic; 48 stateDp_dbg: out std_logic; 49); 50 end Step; 51 stateDp of Step is			
S_AXLvhd 38 setTstep: in std_logic_vector(7 downto 0); 39 reqInvZero: in std_logic; 40 reqInvZero: ut std_logic; 41 ackInvZero: ut std_logic; 42 step1: uut std_logic; 43 step2: uut std_logic; 44 step2: uut std_logic; 45 step3: uut std_logic; 46 stateOp_dbg: out std_logic; 47 47 48 stateOp_dbg: out std_logic; 50 end Step; 51 stateCure Step of Step is			
40 reqInvZero: in std_logic; 41 ackInvZero: out std_logic; 42 step1: out std_logic; 43 step2: out std_logic; 44 step2: out std_logic; 45 step3: out std_logic; 46 step4: out std_logic; 47 47 49); 90 end Step; 51 stateOp_d6g: out std_logic_vector(7 downto 8) 52 architecture Step of Step is	S_AXI.vhd		
41 ackInvZero: out std_logic; 42 43 43 step1: out std_logic; 44 step2: out std_logic; 45 step4: out std_logic; 46 step4: out std_logic; 47 stateOp_dbg: out std_logic; 58 end Step; 51 51 52 architecture Step of Step is			
42 3 step1: out std_lop1;; 43 step2: out std_lop1;; 44 step2: out std_lop1;; 45 step3: out std_lop1;; 46 step4: out std_lop1;; 47 47 48 stateOp_dbg: out std_lop1; 59 end Step; 51 52 52 architecture Step of Step is			
d 43 step1: out std_logic; 44 step2: out std_logic; 45 step3: out std_logic; 46 step4: out std_logic; 47 step4: out std_logic; 47 step4: out std_logic_vector(7 downto 0) 49); 50 end Step; 51 step4: step of Step is			
d 4 step2: out std_logic; 5 step3: out std_logic; 46 step4: out std_logic; 47 stateDp_dbg: out std_logic, 48 stateDp_dbg: out std_logic_vector(7 downto 0) 49); 50 end Step; 51 52 architecture Step of Step is			
_0.vhd 46 47 48 48 49 49 49 50 50 50 51 52 52 52 52 52 52 52 52 52 52 52 52 52	d		
_O.vhd 47 48 stateOp_dbg: out std_logic_vector(7 downto 0) 49); 50 end Step; 51 52 architecture Step of Step is			
Ovhd 48 stateOp_dbg: out std_logic_vector(7 downto 0) 49); 58 end Step; 51 52 architecture Step of Step is			
49); 50 end Step; 51 architecture Step of Step is			
50 end Step; 51 52 architecture Step of Step is	_0.vhd		
51 52 architecture Step of Step is			
			51
53			
			53

er device driver (AXI) ace" module, CRC

....

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development

EXPLORER

v ezdevwskd

> UntWskdArty > UntWskdlccl

> UntWskdUbdl
 C DevWskd.h
 G Wskd.cpp
 C Wskd.h

Axitx_v2_0.vh Bcdfreq_v1_0. Camacq.vhd Camif.vhd Crc8005 32 Debounce v1 Featdet.vhd Hostif.vhd I2c.vhd lccl_ip_v1_0_S lccl.pdc lccl.vhd Laser.vhd Mult_v1_0.vhd Rgbled4.vhd Rgbled5.vhd Spimaster v1 State.vhd Step.vhd Sub_v1_0.vhd

✓ fpgawskd > arty

✓ iccl
> support
≡ Add_v1_0.vhd
≡ Axirx_v2_0.vh

/ WSKD
/ _mdl
/ _rls

- module definition, command definition, fine structure
- Linux side developer-facing: executable API method
- Linux side in background: translation into byte code and invocation of character device driver (AXI)
- FPGA side in background: reception and decoding of byte code in "host interface" module, CRC evaluation
- FPGA side developer-facing: handshake signals
- FPGA side left for manual implementation: finite state machine reacting to command invocation

- module definition, co
- Linux side developer
- Linux side in backgro ۰
- FPGA side in backgro evaluation
- FPGA side developer
- FPGA side left for ma

iracter device driver (AXI)

terface" module, CRC

o command invocation

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development

EXPLORES

WSKD

> mdl

> _rls

ezdevwskd

> UntWskdArty

> UntWskdlccl

C DevWskd.h

G Wskd.cpp

C Wskd.h

> artv

 \sim iccl

fpgawskd

> support

Camif.vhd

Featdet vhd

Hostif vhd

I2c.vhd

Iccl.pdc

Iccl.vhd

Laser.vhd

State.vhd

Step.vhd

Top.vhd

> mcen

meuwski

Π …

embedded world Conference 2022

Deep dive II: camera preview images on the move

FPGA-based binning, processing in C++ code and forwarding to the UI

- pixels arrive over four-lane MIPI CSI at 576Mbps per lane and get deserialized into a 10-bit RAW10 data stream at about 20fps
- four preview modes (2560 x 1280 to 160 x 120 RGB vs. 2048 x 1536 to 256 x 192 grayscale), manual implementation using finite state machines and 2/4kB buffers
- "buffer transfers" are besides "commands" the second functionality which can be generated for the host interface
- polling in separate thread on host, insertion into "job tree" via "call"
- generation of XML block containing image data, Base64 coded transmission
- reception in web browser via HTTPS/1.1 "long polling", rendering in HTML5 <canvas/>

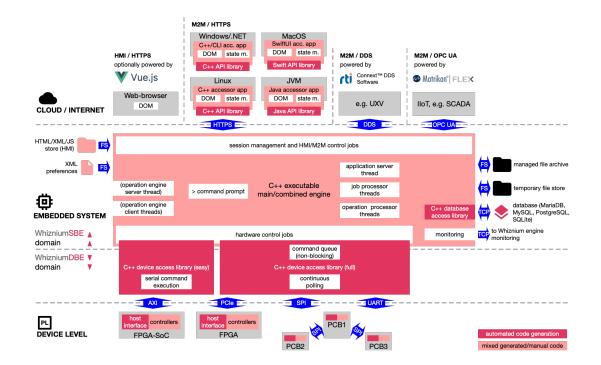
Deep dive III: meta data and the "lowering" process in Whiznium From SQL database structure to code and UI elements to XML/JSON blocks

- all WhizniumSBE applications are backed by a SQLite3 database
- "Database structure": tables "Object group" (1:N) "Object" (1:N) "Snapshot" and corresponding "Basic user interface"

Deep dive III: meta data and the "lowering" process in Whiznium From SQL database structure to code and UI elements to XML/JSON blocks

	ite3 database
Object groups Identifier ↓ Name ↓ Super group ↓ > anns Animals Econs > icons Loons (none) > ordus Office tools (none) > pngs Penguins (toors) Animals	Object" (1:N) "Snapshot" and corresponding Whiznium StarterKit 0.128 I 192.168.178.25 Whiznium StarterKit 0.128 I inux-Tux Objects (1) I inux-Tux Image: Inux-Tux I inux-Tux </th
Showing 1 to 4 of 4 Go to ((\)) Object group. (no object group)	• C

Deep dive III: meta data and the "lowering" process in Whiznium From SQL database structure to code and UI elements to XML/JSON blocks


- all WhizniumSBE applications are backed by a SQLite3 database
- "Database structure": tables "Object group" (1:N) "Object" (1:N) "Snapshot" and corresponding "Basic user interface"
- first "lowering" step: multi-locale UI elements, "queries", "panels" and "controls"
- second "lowering" step: "blocks" and "dispatches" for engine <-> app communication
- code generation "database access library"
- code generation on engine side: classes for "cards", "panels" and "queries" which at runtime dynamically generate objects responsible for web UI sessions and react to user input
- code generation app side: HTML and JavaScript

Conclusion demo project

The model-based approach pays off

 the maze of software technologies relevant for FPGA-SoC's is cleanly covered by a single, coherent method

1 0

Whiznium concepts

Modularity, transparency and re-usability

- Whiznium is Open Source; the generated code is subject to no license restrictions
- Whiznium generates well-organized, human-readable source code trees which can be synthesized / compiled "out-of-the-box"
- manual modifications are enabled through the concept of "insertion points"
- upon source code iteration (e.g. following model extension) manual modifications are carried over to the next version
- generated code relies on few, well-proven external libraries, all of which are Open Source. Standards are strictly followed
- WhizniumDBE features parametrized "module templates". Besides corresponding VHDL files, template-specific intervention in the WhizniumDBE master database through C++ code is possible
- WhizniumSBE features parametrized "capability templates". Also here, template-specific intervention in the WhizniumSBE master database through C++ code is possible

- WhizniumSBE and WhizniumDBE are Linux-based "daemons" (and [fun fact] WhizniumSBE projects), which receive model information and send source code trees via HTTPS
- Java tools WhizniumDBE/SBE Bootstrap offer initialization of WhizniumDBE/SBE with project information stored in a local folder structure

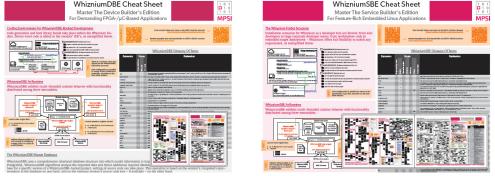
Incorporation into existing developer workflows

• WhizniumSBE and WhizniumDBE are Linux-based "daemons" (and [fun fact] WhizniumSBE projects), which receive model information and send source code trees via HTTPS

•	Java tools	WhizniumDBE Bootstrap	er initializa	• • • WhizniumSBE Bootstrap	oject
	informatic	Perform tool initialization	e	Perform tool initialization	
		Locate repository root directory		Locate repository root directory	
		no directory selected		no directory selected	
		no WhizniumDBE projects found		no WhizniumSBE projects found	
		Bootstrap		Bootstrap	
		ready	_	ready	
		Attempted importing 2 projects: all succeeded.		Attempted importing 6 projects: all succeeded.	

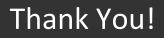
- WhizniumSBE and WhizniumDBE are Linux-based "daemons" (and [fun fact] WhizniumSBE projects), which receive model information and send source code trees via HTTPS
- Java tools WhizniumDBE/SBE Bootstrap offer initialization of WhizniumDBE/SBE with project information stored in a local folder structure
- Java tools WhizniumDBE/SBE Iterator help transform local source code trees from the current version to the next. Here, API calls replace manual UI clicks

٠	Whiznium	• • WhizniumDBE Iterator	based "dae	•••	WhizniumSBE Iterator	BE projects),
	which rece	Connect Disconnect	source coc	Connect	Disconnect	
		connected to 192.168.178.22:13105		connected to 192	2.168.178.22:13106	
•	Java tools	Projects	er initializa	Projects		oject
	informatic	HelloWhiznium Device Whiznium StarterKit Device	0	HelloWhiznium WhizniumDBE		
	mormatic			WhizniumSBE Engi		
			6	Whiznium License WhizniumSBE	Manager	
٠	Java tools		ransform	Whiznium Starterk	it	urrent
	version to	current version is v1.0.2	nanual UI	current version is	s v1.0.3	
		Change project's current version		Change	e project's current version	
		Step version and iterate source code tree		Step ver	sion and iterate source code tree	
		Iterate source code tree		Iterat	e source code tree	
		project selected		project selected		
		Successfully iterated source code tree of project Whiznium St arterKit Device to version 1.0.2.		Successfully itera arterKit to version	tted source code tree of project Whiznium St n 1.0.3.	



- WhizniumSBE and WhizniumDBE are Linux-based "daemons" (and [fun fact] WhizniumSBE projects), which receive model information and send source code trees via HTTPS
- Java tools WhizniumDBE/SBE Bootstrap offer initialization of WhizniumDBE/SBE with project information stored in a local folder structure
- Java tools WhizniumDBE/SBE Iterator help transform local source code trees from the current version to the next. Here, API calls replace manual UI clicks
- WhizniumDBE code can be developed using the vendor-provided tools, e.g. Vivado, Quartus, Libero SoC or Simplicity Studio
- WhizniumSBE code can be (cross-)compiled using the industry-standard tool chains gcc/Clang. (Remote-)Debugging can be done using e.g. VS Code
- the Yocto project helps building custom Embedded Linux distributions for each FPGA-SoC platform. WhizniumSBE projects run on those distributions

Resources


- both Whiznium tools are available free of charge on GitHub, including installation instructions
 <u>https://github.com/mpsitech/The-Whiznium-Documentation</u>
- the Open Source StarterKit ist available for various hardware platforms, with vendor-specific instructions also available on <u>GitHub</u>
- "The Whiznium Developer Experience" on YouTube is an ongoing Webinar series on Whiznium
- for advanced users WhizniumSBE/DBE cheat sheets are available which serve as reference for writing model files
 WhizniumDBE Cheat Sheet Mater The Davice Builder's Edition Reserve as the serve as the se

A Model-based Approach to Mastering Complexity in FPGA-SoC Software Development

embedded world Conference 2022

Don't hesitate to reach out aw@mpsitechnologies.com

