
Vendor-agnostic probing of FPGA designs
For efficient run-time debugging

Alexander Wirthmüller
aw@mpsitechnologies.com

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Introduction
About me

• Based in Munich

• Diploma in Electrical Engineering

• Founder and Director at MPSI Technologies

• MPSI Technologies: make Embedded Software development
more pleasant – by replacing repetitive tasks with
model-based source code generation

• Senior Staff Engineer with Symeo / indie Semiconductor
(industrial radar)

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

FPGA Design Probing
Scope | IDE-based vs. generic | Platforms

• For CPU code, iterations (compile + link) are relatively fast:
Use debugger iff problem encountered (unexpected behavior, segmentation fault, …)

• Unit and integration tests are mandatory in quality projects

• Test-driven development also exists (but is the exception)

• FPGA designs, are costly (time-wise) to iterate, also harder to grasp for the human brain:
Logic test-benches and simulation are part of every design

• Complexity starts with integration [of designs from other vendors]

• Full design simulation and randomized testing still possible (and done)

• “Outside-world” triggers and concurrency often hold surprises → case for design probing

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

FPGA Design Probing
Scope | IDE-based vs. generic | Platforms

Vendor offerings
• Altera: Signal Tap Logic Analyzer, Signal Probe +

System Console
• AMD: Virtual I/O + Vivado
• Efinix: Virtual I/O + Efinity / GTKwave
• Lattice: Reveal + Diamond

Microchip: SmartDebug + Windows UI

→ all require proprietary IP blocks and/or software,
most use the JTAG interface as debug port

This work
• General-purpose tracking of 15-bit wide signals

with (time-domain) compression
• FSM state tracking + statistics with compression
• Read-out to CPU and .vcd output for

visualization in GtkWave

Key enablers
• PHY-agnostic CPU (host) interface with

bytecode protocol
• Vendor-agnostic instantiation of memory

primitives
• Powered by Open Source WhizniumDBE

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

FPGA Design Probing
Scope | IDE-based vs. generic | Platforms

Avnet ZUBoard 1CG (zudk)
- Based on Zynq UltraScale+ 1CG
- Device ZU1CG-1SBVA484I
- Host: Yocto Linux on ARMv8 (AXI/64)
ü 1GB DDR4 SDRAM

Efinix Titanium Ti180
dev kit (tidk)

- Device Ti180M484I3
- Host: Buildroot Linux on soft

RISC-V (AXI/32)
ü 256 MB LPDDR4 SDRAM

Lattice CrossLink-NX
eval board (cleb)
- Device LIFCL-40-9BG400C
- Host: PC / NUC (UART-over-USB)
✗ DDR memory

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Example #1: Pushbutton De-bounce
Context | Capture | Gptrack_Easy_v1_0 | Data format | Readout

debounce
insensitive for
10ms

Mgptrack
mclk-based
general purpose
signal tracking

wr rd

seqbuf 4kB

tr
ig
ge
r

ca
pt
ur
e

mclk: 100 MHz

trkclk = mclk

btn0.rising
btn0.falling

btn0

btn0_sig

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Example #1: Pushbutton De-bounce
Context | Capture | Gptrack_Easy_v1_0 | Data format | Readout

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Example #1: Pushbutton De-bounce
Context | Capture | Gptrack_Easy_v1_0 | Data format | Readout

AXIstream/8

Gptrack
general purpose
signal tracking

rx
d,
 tx
d
CM
O
S
in
/o
ut

Hostif
protocol for Linux

host
communication
(UART config)

UART

co
m

m
an

ds
,

bu
ffe

rs

wr rd

seqbuf NkB

tr
ig
ge
r

ca
pt
ur
e

mclk

trkclk

std_logic_vector(14 downto 0)

Nx std_logic

• 15-bit capture port

• Selectable trigger

• Variable size
sequence buffer

• Tracking clock
(trkclk)

• Master clock for
readout (mclk)

• Adaptive readout
width

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Example #1: Pushbutton De-bounce
Context | Capture | Gptrack_Easy_v1_0 | Data format | Readout

• 32-bit words, raw vs. burst flag, two captures (raw) vs. capture + duration (burst)

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Example #1: Pushbutton De-bounce
Context | Capture | Gptrack_Easy_v1_0 | Data format | Readout

mgptrack.select(
staTixVTrigger={void,btn0.rising,btn0.falling,ackInvTkclksrcSetTkst.rising},
stoTixVTrigger={void,btn0.rising;btn0.falling;ackInvTkclksrcSetTkst.rising})

mgptrack.set(rng={false,true},TCapt=[uint32])

(tixVState{idle,arm,acq,done}) = mgptrack.getInfo()

(file) = seqbufMgptrackToHostif.read(reqlen[uint32])

• Three commands for trigger selection, acquisition start and status polling

• One buffer transfer for resulting sequence buffer

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Example #2: CPU-FPGA Transaction
Context | Capture | Fsmtrack_Easy_v1_0 | Data format | Readout

• PHY-agnostic CPU host interface with byte protocol to invoke commands / write/read buffers

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Example #2: CPU-FPGA Transaction
Context | Capture | Fsmtrack_Easy_v1_0 | Data format | Readout

type stateOp_t is (
stateOpInit,
stateOpIdle,
stateOpRxopA, stateOpRxopB, stateOpRxopC, stateOpRxopD, stateOpRxopE,
stateOpTxpollA, stateOpTxpollB, stateOpTxpollC, stateOpTxpollD, stateOpTxpollE, stateOpTxpollF, stateOpTxpollG,
stateOpTxA, stateOpTxE, stateOpTxB, stateOpTxC, stateOpTxD, stateOpTxF, stateOpTxG,
stateOpTxbufA, stateOpTxbufB, stateOpTxbufC, stateOpTxbufD, stateOpTxbufE, stateOpTxbufF, stateOpTxbufG, stateOpTxbufH,
stateOpRxA, stateOpRxB, stateOpRxC, stateOpRxD,
stateOpRxbufA, stateOpRxbufB, stateOpRxbufC, stateOpRxbufD, stateOpRxbufE, stateOpRxbufF,
stateOpInv

);

stateOp_dbg <= x"00" when stateOp=stateOpInit
else x"10" when stateOp=stateOpIdle
else x"20" when stateOp=stateOpRxopA
else x"21" when stateOp=stateOpRxopB
else x"22" when stateOp=stateOpRxopC
else x"23" when stateOp=stateOpRxopD
else x"24" when stateOp=stateOpRxopE
else x"30" when stateOp=stateOpTxpollA
else x"31" when stateOp=stateOpTxpollB
...
else x"80" when stateOp=stateOpInv
else (others => '1');

• FSM states for individual sub-transfers and mapping to ID (C enum style)

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Example #2: CPU-FPGA Transaction
Context | Capture | Fsmtrack_Easy_v1_0 | Data format | Readout

• DUT comprises host interface and
connected module 10 kHz clock source

• Trigger on first received byte from CPU

• Capture FSM progress and tkst (time
stamp) update

• CPU-triggered command is
tkclksrc.setTkst(tkst=0)

Mgptrack
mclk-based
general purpose
signal tracking

Mfsmtrack1
mclk-based

FSM state tracking

Mfsmtrack0
mclk-based

FSM state tracking

Hostif
protocol for Linux

host
communication
(AXIlite.64 config)

Tkclksrc
10 kHz clock and
time stamp
generation

mclk: 100 MHz

ca
pt

tr
ig

ca
pt

tr
ig

ca
pt

tr
ig

trkclk = mclk

tkclk
tkclksrcGetTkst[7:0]

hostifRxAXIS_tvalid.r
ackInvTkclksrcSetTkst.r

hostifRxAXIS_tvalid.r
ackInvTkclksrcSetTkst.r

hostifRxAXIS_tvalid.r
ackInvTkclksrcSetTkst.r

hostif.stateOp

tkclksrc.stateOp

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Example #2: CPU-FPGA Transaction
Context | Capture | Fsmtrack_Easy_v1_0 | Data format | Readout

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Example #2: CPU-FPGA Transaction
Context | Capture | Fsmtrack_Easy_v1_0 | Data format | Readout

states covered: 0x00 (init), 0x01 (idle), 0x10 (runA), 0x11 (runB), 0x20 (done)

states missed: 0x12 (runC), 0x30 (reset)

first state occurrence in ms:
[0.000000] 0x00 (init)
[0.000010] 0x01 (idle)
[0.003320] 0x10 (runA)
[0.003348] 0x11 (runB)
[0.019200] 0x20 (done)

state occurrence and share:
0x00 (init): 88.0% (1760/2000)
0x01 (idle): 0.1% (2/2000)
0x10 (runA): 3.3% (66/2000)
0x11 (runB): 6.6% (132/2000)
0x20 (done): 2% (40/2000)

• FSM state statistics output (different example)

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Example #2: CPU-FPGA Transaction
Context | Capture | Fsmtrack_Easy_v1_0 | Data format | Readout

Fsmtrack
FSM state tracking

PS
-P
L
sw
itc
h
AX
Ili
te
 6
4b
it

Hostif
protocol for Linux

host
communication
(AXIlite.64 config)

AXilite/64

co
m

m
an

ds
,

bu
ffe

rs

wr rd

cntbuf 2kB

wr rd

fstoccb.2kB

wr rd

seqbuf NkB

3x AXIstream/64

tr
ig
ge
r

ca
pt
ur
e

mclk

trkclk

Mx stateXxx/8

Nx std_logic

• Mux’ed capture port

• Selectable trigger

• Count buffer

• First occurrence buffer

• Variable size sequence
buffer

• Tracking clock (trkclk)

• Master clock for readout
(mclk)

• Adaptive readout width

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Example #2: CPU-FPGA Transaction
Context | Capture | Fsmtrack_Easy_v1_0 | Data format | Readout

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Example #2: CPU-FPGA Transaction
Context | Capture | Fsmtrack_Easy_v1_0 | Data format | Readout

mfsmtrack0.select(tixVSource={hostifOp},
staTixVTrigger={void,hostifRxAXIS_tvalid,ackInvTkclksrcSetTkst},
stoTixVTrigger={void,hostifRxAXIS_tvalid,ackInvTkclksrcSetTkst})

mfsmtrack0.set(rng={false,true},TCapt=[uint32])

(tixVState{idle,arm,acq,done},coverage[blob32]) = mfsmtrack0.getInfo()

(file) = cntbufMfsmtrack0ToHostif.read(reqlen[uint32])
(file) = fstoccbufMfsmtrack0ToHostif.read(reqlen[uint32])
(file) = seqbufMfsmtrack0ToHostif.read(reqlen[uint32])

• Three commands for source/trigger selection, acquisition start and status polling

• Three buffer transfers for resulting count, first occurrence and sequence buffers

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Example #3: Time-multiplexed DDR Memory Access
Context | Capture | CDC & Performance

Ddrif
channel arbitration,
protocol translation

+ _arburst, _arlen,
_arprot,

_arsize, _awburst, …

client
CPU-triggered
load / store
operations

trafgen
random write
operations

get
buf
set
buf

AXI4
(reduced)set

buf

PS-PL switch AXI 128bit

AXI4/128

AXI4
(reduced) Memgptrack

memclk-based
general purpose
signal tracking

wr rd

seqbuf 4kB

tr
ig
ge
r

ca
pt
ur
e

mclk: 100 MHz

trkclk: memclk 300 MHz

reqClientToDdrifRd
ackClientToDdrifRd
memRdAAXI_rvalid
reqClientToDdrifWr
ackClientToDdrifWr

memWrAAXI_wready
reqTrafgenToDdrifRd
ackTrafgenToDdrifWr
memWrBAXI_wready

ackInvClientLoadGetbuf
ackInvClientStoreSetbuf

• Ddrmux module template
to share DDR memory
access across multiple
read/write ports

• AXI4 burst mode
transfers (here: 16 beats
@ 16 byte)

• Deterministic transfers
from / to client buffers
perturbed by random
trafgen traffic

• Capture request /
acknowledge handshakes

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Example #3: Time-multiplexed DDR Memory Access
Context | Capture | CDC & Performance

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Example #3: Time-multiplexed DDR Memory Access
Context | Capture | CDC & Performance

• Trigger signals are CDC’ed before the input mux, otherwise (true) dual port RAM’s achieve the CDC
between tracking and read-out

• All inputs are registered, timing closure achieved at up to 434 MHz (on Xilinx MPSoC)

• Most critical (not in this example): count buffer due to read _and_ write on trkclk

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

WhizniumDBE Module Templates

• WhizniumDBE module templates used across the presented examples
(cf. https://github.com/mpsitech/wted-WhizniumDBE-Template-Evaluation-Device)

Module template Features

Axislave_v1_0 *) AXIlite to AXI stream, var. width

Crcspec_v3_0 16-/32-bit poly CRC with var. width AXI stream

Ddrmux_Easy_v1_0 Multiplexed DDR memory access with burst transfers across subset of AXI4, transfer
statistics accumulation with CPU read-out CROSS-VENDOR PHY-AGNOSTIC

Debounce_v1_0 Digital pushbutton debouncer

Dpram_efnx_v1_0 Dual-port RAM generator for Efinix with asymmetric port widths

Dpebram_lttc_v1_2 *) Dual-port EBRAM wrapper for Lattice

Dpbram_xlnx_v8_4 Dual-port BRAM wrapper for Xilinx

Fsmtrack_Easy_v1_0 FSM tracker with trigger and capture manifolds, compression and statistics
accumulation, CPU read-out CROSS-VENDOR

https://github.com/mpsitech/wted-WhizniumDBE-Template-Evaluation-Device

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

WhizniumDBE Module Templates

• Plus, an awesome 3rd party core: neoTRNG for random number generation (BSD3 license)
https://github.com/stnolting/neoTRNG

Module template Features (cont’d)

Gptrack_Easy_v1_0 15-bit general purpose tracker with trigger manifold and compression, CPU read-out
CROSS-VENDOR

Hostif_Easy_v1_0 Connection to CPU host with byte protocol decoding PHY-AGNOSTIC

Ident_Easy_v1_0 Block / IP identification including version and Git hash with CPU read-out

Rgbled_v1_0 Driver for RGB888 in to PWM LED out

Timeout_v1_0 *) Watchdog timer

Tkclksrc_Easy_v1_0 10 kHz clock source for time-stamping and timeout tasks with CPU read-out

Top_v1_0 Clock and reset generation, top-level routing CROSS-VENDOR

Uartrx/tx_v2_0 *) UART RX/TX to AXI stream

*) auto - instantiated

https://github.com/stnolting/neoTRNG

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

WhizniumDBE (“Device Builder’s Edition”) is

• NOT high-level synthesis (HLS), not a compiler

• NOT your typical generator framework

• NOT a visual design tool

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

WhizniumDBE (“Device Builder’s Edition”) is

• NOT high-level synthesis (HLS), not a compiler

• NOT your typical generator framework

• NOT a visual design tool

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow

WhizniumDBE is

… a user-extensible framework written in C++, that for a given RTL design

… interprets its structure and features, specified in text-based model files

… composes and maintains a fine-grained RTL model *) in a SQL database

… then is able to write VHDL and C++ code based on it

… taking into account manual code contributions of previous design versions

*) from hierarchical structure down to FSM’s incl. state transitions, CDC fabric,
generics/ports/signals/variables

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

• Clean, ergonomic, source code structure
(“tasteful naming conventions”, etc.)

• Parametrized templates for standard components
(e.g. SPI, GPIO, CRC, Git-Ident; 35 and counting)

• Custom templates can interact with the model /
module surroundings while a design is composed
(not just simple files with placeholders)

• The applicable vendor(‘s primitives) can be an
auto-derived template parameter

• Scope extends beyond the FPGA world with
WhizniumSBE (Service Builder’s Edition)

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

• Regular RTL workflow (including use of vendor IDE’s) augmented by “source code tree iteration”

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

• Modular description (IexWdbeMdl.txt), CRC template, polynomial changed

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

• Modular description (IexWdbeMdl.txt), CRC template, polynomial changed

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

• Modular description (IexWdbeMdl.txt), CRC template, polynomial changed

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

• Modular description (IexWdbeMdl.txt), CRC template, polynomial changed

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

• Command set and buffer transfers (IexWdbeCsx.txt), command added to module “Client”

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

• Command set and buffer transfers (IexWdbeCsx.txt), command added to module “Client”

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

• Command set and buffer transfers (IexWdbeCsx.txt), command added to module “Client”

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

• Custom fine structure (IexWdbeFin.txt), FSM state added

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

• Custom fine structure (IexWdbeFin.txt), FSM state added

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

• Custom fine structure (IexWdbeFin.txt), FSM state added

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

• WhizniumDBE Iterator (cross-platform Java tool accessing the WhizniumDBE daemon via it JSON
API)

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

• WhizniumDBE Iterator (cross-platform Java tool accessing the WhizniumDBE daemon via it JSON
API)

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow

Full Video: https://content.mpsitech.cloud/FPGAEurope2024/WhizniumDBE_step.mp4

https://content.mpsitech.cloud/FPGAEurope2024/WhizniumDBE_step.mp4

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Conclusion & Outlook

• PHY- and vendor-agnostic probing of FPGA designs using Open Source software is feasible

• … and long-overdue to replace proprietary solutions

• Mid-range (and larger) devices have sufficient capacity to implement this functionality

• TBD 1: integration of read-out and .vcd generation into the Open Source WhizniumDBE core library;
also support merging results across clock domains

• TBD 2: addition of a WhizniumSBE capability to control the probing blocks from an (auto-generated)
web UI

• Not on the roadmap: the ”O” part of “Virtual I/O”. While probing is universal, stimuli aren’t … and it
is easy to design a project-specific, CPU-connected module using WhizniumDBE

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Resources

• Both Whiznium tools are available free of charge on GitHub, including installation instructions
https://github.com/mpsitech/The-Whiznium-Documentation

• The Open Source StarterKit ist available for various hardware platforms, with vendor-specific
instructions also available on GitHub

• “The Whiznium Developer Experience” webinar series on Whiznium is on YouTube (google it)

• For advanced users WhizniumSBE/DBE cheat sheets are available which serve as reference for
writing model files

https://github.com/mpsitech/The-Whiznium-Documentation

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Resources

• Both Whiznium tools are available free of charge on GitHub, including installation instructions
https://github.com/mpsitech/The-Whiznium-Documentation

• The Open Source StarterKit ist available for various hardware platforms, with vendor-specific
instructions also available on GitHub

• “The Whiznium Developer Experience” webinar series on Whiznium is on YouTube (google it)

• For advanced users WhizniumSBE/DBE cheat sheets are available which serve as reference for
writing model files

• (New) home for cross-vendor cores
https://mpsitech.github.io/Laser-Scanner-By-Platform

• Some more presentations on the topic
https://www.mpsitech.com/documentation/presentations

https://github.com/mpsitech/The-Whiznium-Documentation
https://mpsitech.github.io/Laser-Scanner-By-Platform
https://www.mpsitech.com/documentation/presentations

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Thank You!
Questions?

Alexander Wirthmüller
Founder & Director

Phone: +49 (89) 4524 3826
Mobile: +49 (175) 918 5480
E-Mail: aw@mpsitech.com

MPSI Technologies GmbH
Agnes-Pockels-Bogen 1
80992 Munich
Germany
www.mpsitech.com

Also, feel free to connect.

• https://www.linkedin.com/in/wirthmua

• https://github.com/mpsitech

https://github.com/mpsitech
https://github.com/mpsitech

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Gptrack / Fsmtrack model entry

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Hostif model entry

Vendor-agnostic probing of FPGA designs
For efficient real-time debugging

FPGA Conference Europe 2024

Efinix vs. Xilinx Fsmtrack

