Implementing and profiling
collaborative CPU-FPGA projects
with real-time requirements

T 0 1
Q1 0 M PSI Alexander Wirthmuller
T 0 1

TECHNOLOGIES aw@ mpsitechnologies.com

Introduction

About me

Based in Munich

* Diploma in Electrical Engineering

* Founder and Director at MPSI Technologies

-

MPSI

* MPSI Technologies: make Embedded Software development

more pleasant — by replacing repetitive tasks with T 0 T TECHNOLOGIES
model-based source code generation

* Senior Staff Engineer with Symeo / indie Semiconductor
(industrial radar) SEMICONDUCTOR

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Introduction

Scope

 CPU-based configuration (e.g. set FPGA IP core parameters once on start-up) &
monitoring (e.g. accumulate throughput statistics)

* Few updates per second / timing not critical
* FPGA subsystem performs functionality even when left alone by the CPU

— Not the topic of this talk

* Here: focus on functionality which requires continuous CPU-FPGA interaction

* Sometimes with Realtime (RT) requirements

Implementing and profiling collaborative CPU-FPGA projects 101

. . . FPGA Conference Europe 2025
with real-time requirements

CPU-FPGA Collaboration
Why do it | How to do it

Vast availability of specialized third-party libraries for CPU

Significantly less effort for sequential C/C++ code as compared to RTL: coding,
debugging, maintenance

On-system information availability / distribution: e.g. in industrial context by
default via Ethernet and CPU-side middleware

FPGA’s are slow (typ. 200 MHz with tuned sections > 400 MHz)

Few [sequential] algorithms are really suitable for high-level synthesis (HLS) or
should be tackled by HLS

Implementing and profiling collaborative CPU-FPGA projects 101

with real-time requirements

FPGA Conference Europe 2025

CPU-FPGA Collaboration

Why do it | How to do it

* Two options in FPGA-SoC'’s
* FPGA subsystem as memory-mapped peripheral CPU address space

e Shared section of DDR memory (with of without formal DMA functionality)

e By extension: standalone FPGA system as PCle peripheral of CPU host

Implementing and profiling collaborative CPU-FPGA projects 101

. . . FPGA Conference Europe 2025
with real-time requirements

Brief #1: Network packet scheduling

Application | Algorithm (simplified)

* FPGA accepts Ethernet frames, stores many frames in few-kB packets in DDR memory (1000+ slots)
* FPGA notifies CPU of stored packet (slot + ID)

* FPGA sends one packet (+ forward error correction) every 100 ps [hard realtime] via Gigabit
transceiver and optical fiber

* CPU should ideally make one “send” decision per 100 us and communicate it to FPGA

* Without decision, FPGA re-sends previous packet

* Implementation: Linux host on MPSoC Cortex-A53 polling updates via AXI lite; DDR memory access
(reserved region) exclusive from FPGA

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Brief #1: Network packet scheduling

Application | Algorithm (simplified)

pkt23 | pkt15 | pkt7 | pkta | pkt13 | pkte | pkt22 | pkts | scheduling (poll-then-request)
EPGA subsystem
| pkt 17 | pkt23 | pkt 15 | pkt7 | pkt4 | pkt4 | pkt4 | pkt13 | pkt9 | pkt22 | pkts | packet emission

100 ps fixed interval, hard real-time
packet fetch from DDR memory

| | | | | | | | | | | | new packet store in DDR memory

time

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Brief #2: Radar cube processing

Application | Algorithm (simplified)

* CPU assigns DDR memory slot to FPGA for the next frame

* FPGA accepts and time-stamps high-bandwidth multi-channel ADC data, does initial DSP, stores
result (1) in DDR memory [hard realtime]

* Two failure points: a. no slot assigned => frame is skipped; b. buffer overflow writing to DDR
memory => frame is skipped, CPU is notified

* FPGA continues to do DSP within assigned slot and processes result (1) into result (2)
* FPGA notifies CPU of completion, along with initially assigned time-stamp

* CPU post-processes result (2) with varying degree of time consumed

* Implementation: Linux host on MPSoC Cortex-A53 polling updates via AXI lite; shared DDR memory
section

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Brief #2: Radar cube processing

Application | Algorithm (simplified)

I ppr3 | postprocessing
use 0 | usel | use 2 | use 0 I use 1 | use 2 I use 3 | use 0 I slot assignment
CPU subsystem
EPGA subsystem
3 | to0 | to1 1 to2 | w0 | skip | skip I to1 | 02 x | t02 | to3 1 ADC -> DSP -> result 1 -> DDR memory
10 ms fixed interval, hard real-time
| 3t03 | | 1to1 | 2t02 | | 1to1 | | 2to2 | DDR memory -> DSP -> result 2 -> DDR memory
time .

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Example #3: Vision-to-rotary table Pl controller

Introduction | FPGA design | Feedback loop | Results

* Hardware: tabletop 3D laser scanner; ZUBoard (AMD MPSoC CG1), rotary table with stepper motor,
IMX335 5MP MIPI camera, [line lasers]

* Objective: closed loop control of stepper motor with detection of rotary angle using FPGA-based
computer vision

Implementing and profiling collaborative CPU-FPGA projects FPGA Conference Europe 2025

with real-time requirements

Example #3: Vision-to-rotary table Pl controller

Introduction | FPGA design | Feedback loop | Results

* CPU-based angle determination used to be OpenCV based, now is custom

® 0 ® @ Whiznium Starterkit v1.2.5 X + S

&« C A\ Nicht sicher 192.168.178.61:13100/web/CrdWzskVtr/CrdWzskVtr.htmI?scrdref=vvsem9ckhiqzbvcq P g 3 ’

Whiznium StarterKit Vision-to-rotary

_ | Configuration =

Preview and ROI

mode ® grayscale () RGB

angle setpoint [°] H 23.5

state [idle]

Start Stop

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Example #3: Vision-to-rotary table Pl controller

Introduction | FPGA design | Feedback loop | Results

e Sensor

H H H H Rotar Laser
Camif -> Videoin -> Corner -> Hostif Rotary | | Laser
control modulation
. pvw: preview
° .
Actuation Decim b
i Director %9 . 16x16
Hostif -> Rotary irectol
Tr. Hostif
Iaseri:-eoﬂ Flgbuf protocel for Linux
e host
difference 38kE DPBRAM
communication
F . Videoin derection {AXllite.64 config)
5E0C g Camif el | de-mosalc, RGE vs
S g | w1 to axistream Eray output, G-row
i parallel output CO"‘IEF
Harrls corner EEBO U-OPERI::L e -
l detection
B Hdreng Ddrif
W RGBE output based H BDR memory _..
_— on n‘i:;’:mm multiplexed access

(AXIztreamn data flow control)

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

{

PS-PL switch
AXI4.128 &
DDR PHY

}

300 mmands
PS-PL switch AXllite 64bit

clk LVDS,
R/G/B LVDS
out

Q

FPGA Conference Europe 2025

Example #3: Vision-to-rotary table Pl controller

Introduction | FPGA design | Feedback loop | Results

* AXI lite/64 for Cortex-A53 CPU-triggered
status polling, corner coordinate buffer
read-out & actuator setpoint feedback O

+
rst_ps8_0_200M i+ soo_ax

—— ACLK

et ARESETN =n
—= S00_ACLK HE W MOO_AXI |y
et SOO_ARESETN g
§—= MOO_ACLK
MOO_ARESETN

* Secondary AXI lite/32 co-host interface
towards Cortex-R5 present but not used

AXI Interconnect

zynq_ultra_ps_e 0
. ‘ " fomeni [+ 500_AXI
[] L_ii| + s_Ax1_HPCO_FPD MAXLHPMO FPD +i=t || L 7] o
u INterrace to access snare it s bee o 10 < et
maxihpm0_fpd_aclk o $——— ARESETN Vsp_core 0
maxihpm0_lpd_aclk p\,ra‘sztlzz P $—— S00_ACLK IEI MOO_AXI
D D R f t h t f H t saxihpe0_fpd_aclk © p"zm 1 so0_aresern g Xm ddrAXI + |
memory 1or otner part or projec UltraSCALE+ P ! oo scue S probel5:0]
Zynq UltraScale+ MPSoC | i ’pufm 5;‘ S“dl
. . —q aresetn sda sda
(H D R |m a gln g) AXI Interconnect —— aci cs
] [——= memlk sclk clk
csi_clk_p [esi_clk_p me: mosi
csi_clk_n [i_clk_n rgb0_r rgb0_r
csi_d0_p [csi_d0 p 9b0_g rgb0_g
csi_d0.n [csi_d0_n rgb0_b rgb0_b
csidlp [csi_dlp rgbl_r rgbl
csidln [csidln rgbl_g rgbl_g
csid2 p [> csid2_p rgbl_b rgbl b
csid2n [csid2_n nsip nsip
csid3 p [esid3 p mo mo
csid3.n [d3n dir dir
tep step

Vsp_core vl 0

Implementing and profiling collaborative CPU-FPGA projects

. . . FPGA Conference Europe 2025
with real-time requirements

Example #3: Vision-to-rotary table Pl controller

Introduction | FPGA design | Feedback loop | Results

* MIPI sensor delivers image frames at 30 fps, FPGA-based Harris corner detection algorithm (fully
pipelined) matches this pace with “zero latency”; no DDR memory is involved

* FPGA informs CPU of finalized coordinate buffer

* CPU locks coordinate buffer (inhibiting corner detection) and runs its portion of algorithm, then
unlocks

* In parallel, FPGA drives stepper motor and expects one variable update from CPU every 5t frame
[hard realtime] (166 ms update interval; variable is angular velocity)

* If noinput, FPGA throttles speed stepwise, down to zero

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Example #3: Vision-to-rotary table Pl controller

Introduction | FPGA design | Feedback loop | Results

o9 | o9 | t09 | o5 | o2 | oo | determine angle, derive speed
CPU subsystem
EPGA subsystem

| speed®s | speed® | speed® | speed8 | speed7 | speed6 | speed® | speed5 | speedz | speedo | speedo | rotary table speed update

5x 33ms = 167 ms fixed interval, hard real-time

rrr i rrrrr e e e r bl sofsiamein-> comer coordinates out

time

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Example #3: Vision-to-rotary table Pl controller

Introduction | FPGA design | Feedback loop | Results

e Example going from -60° to +23.5° with 11 missed update intervals

_ | Monitor

|

23.49

5

e

92

[=2]

=

m

-60.00 ¢ : : : e
-20.00 -10.00 0.000

time [s]

|

2.000 { —————

w

S

o

>

£

[]

=)

L

>

o

| =

m

0.000 -+ i i ! -
-20.00 ~-10.00 0.000

time [s]

Implementing and profiling collaborative CPU-FPGA projects

FPGA Conference Europe 2025

with real-time requirements

Example #3: Vision-to-rotary table Pl controller

Introduction | FPGA design | Feedback loop | Results

* FPGA-triggered handshake req/ackCornerDone (to be acknowledged by CPU) takes random time
(here 27 ps) for ~10 AXIL io{read/write}64()’s from Linux ... despite of 200 MHz PS-PL clock

 CPU-based processing and response reqRotarySet takes additional 14 us

* Tuned version (minimizing io{read/write}64()’s) around 1-2 pus min. latency (on MPSoC!)

3658 us

3590 us 3600 us 3610 us 3620 us 3630 us 3640 us

Time
vsync =0
reqCornerDone =@
ackCornerDone =@
reqRotarySet_sig =0
ackRotarySet =@

Implementing and profiling collaborative CPU-FPGA projects FPGA Conference Europe 2025

with real-time requirements

Example #3: Vision-to-rotary table Pl controller
Introduction | FPGA design | Feedback loop | Results

* Observation of non-deterministic DDR memory read/write operations via AXI full

* Writeis relatively stable but read cycles are scattered => strictly observe / utilize full AXI capabilities
including posting many read addresses without waiting for first read data

Time 1728 us 125 us 126 us

regHdrengToDdrifWr =1 |HNRNENNIRNRNRRNANIRARANRNARNRRRRARNNARIRARARANin L e
ackHdrengToDdrifWr =1 |ILENLELEmERLN L My e
ddrAXT_wvalid_sig =0 |[IH0A 0 AArC e et M AU
ddrAXI_wready =1
ddrAXT_bvalid =0 |[HERNNNARNNRRRRNNRNRRRRNRARARINARN n
regHdrengToDdrifRd =1
ackHdrengTeDdrifRd =1
ddrAXI_rready_sig =1
ddrAXI_rvalid =0

Time 124708 ns 124808 ns 125198 ns 125208 ns
reqgHdrengToDdrifWr =0
ackHdrengToDdrifWr =@
ddrAXI_wvalid_sig =0
ddrAXI_wready =1
ddrAXI_bvalid =0
reqHdrengToDdrifRd =@ AT
ackHdrengToDdrifRd =@ 0 . N A
ddrAXI_rready_sig =@ I
ddrAXT_rvalid =@ | [1111 i rrurn mrrrmn Mt rn

Implementing and profiling collaborative CPU-FPGA projects 10
with real-time requirements [oea

FPGA Conference Europe 2025

Key takeaways (1/2)

 The FPGA subsystem is a formidable real-time processor

* Clock-accurate repetition rate / control loop time constant

* Multiple parallel processes that don't interfere with one another

e Thus, the CPU subsystem can afford relaxed real-time constraints ...
e ..ifthe FPGA subsystem monitors glitches

e ...and has mitigation strategies in place

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Key takeaways (2/2)

* In preceding examples
 #1re-send previous data packet in (real-timed) transmission slot missed by CPU
* #2aidentify buffer overflows writing to DDR memory and void current ADC data’s frame
* #2b use multiple DDR memory slots so the CPU can lock one while the FPGA operates on others

e #3implement “dead man’s switch” in Pl controller if CPU is not responsive

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

The case for model-based CPU-FPGA software co-design

* Live-tracking (trigger in web Ul, output to .vcd) of FPGA signals (vendor agnostic)

e Zero-effort preferences page

Implementing and profiling collaborative CPU-FPGA projects 101

. . . FPGA Conference Europe 2025
with real-time requirements

T h e case fO rmo d (2] Whiznium starteri reterences

_| Daemon settings
T

Combined daemon

Jjobpren \4

appren \1

e Live-tracking (trigger "agnostic)

ddspub
uasrv

» Zero-effort preferen

ixDbsVDbstype ‘ v

dbspath \ ./DbsWzsk.5ql

dbsname \ DbsWzsk

username |default

OPC UA server
profile \.,t‘EmbeddedFroﬁle_StandardNodes.xm\
port |4840

cycle \100

maxbrowse \ 1000

maxmaon \10000

_| Global settings

StgWzskCamera
hpix |1.400000
f[3.780000
fn |3.000000

NColRaw 2592
NRowRaw 1944

. | JobWzskActVistorot settings

_ | JobWzskSrcSysinfo settings

pathStat \fproc/stat

pathrootThermal \fsvsfbusfiio/devices,’i\o: deviceQ/in_temp0_ps_temp

Implementing and profiling collaborative FPGA Conference Europe 2025

with real-time requirements _|30bWzsksrczuvsp settings

The case for model-based CPU-FPGA software co-design

* Live-tracking (trigger in web Ul, output to .vcd) of FPGA signals (vendor agnostic)
e Zero-effort preferences page

* Interactive terminal (web Ul or command line)

Implementing and profiling collaborative CPU-FPGA projects 101

. . . FPGA Conference Europe 2025
with real-time requirements

The case for model-based CPU-FPGA software co-design

Terminal (VSP)

. Connection state |n-::t connected
e Live-trac c)

Data infout

e 7o ro—effc tkclksrc, getThst()

= [tkst=357418)
can:ri.f .getCorereg{dphyNotRxctl=true,addr=8)
= (val=2)

° I corner.getInfol)
I n te ra Ct I = (tixVState=idle, tkst=0,scoreMin=0,scoreMax=a)
hdreng.getInfo()
= (tixVState=idle, tkst=@, ixMem=8)
tkelksrc.getTkst()
= [tkst=1977253)

Command execution

Command | camif.setCorereg v| Append

Command sequence camif.setCorereg(dphyMotRxctl={false,true},addr=
[uint8],val=[uint32])

Submit

Implementing and profiling collaborative CPU-FPGA projects FPGA Conference Europe 2025

with real-time requirements

The case for model-based CPU-FPGA software co-design

* Live-tracking (trigger in web Ul, output to .vcd) of FPGA signals (vendor agnostic)

e Zero-effort preferences page
* Interactive terminal (web Ul or command line)

* Single source of truth for CPU C++ library <- AXI Lite -> FPGA RTL decoder; command set
and bulk data transfers per FPGA sub-module

* Enforced CPU-FPGA version compatibility check

. " . i . —
Implementing and profiling collaborative CPU-FPGA projects S FPGA Conference Europe 2025

with real-time requirements

The case for model-based CPU-FPGA software co-design

* Live-tracking (trigger in web Ul, output to .vcd) of FPGA signals (vendor agnostic)

e Zero-effort preferences page

* |nteractive terminé |reca self-identification
V'SP core
» Single source of trt version [1.2.5 | r; command set
Git hash [185b112 |
and bulk data tran: ——— |
fMelk [MHz]
* Enforced CPU-FPG. Memck [MHz] [325.000000]

Implementing and profiling collaborative CPU-FPGA projects FPGA Conference Europe 2025

with real-time requirements

The case for model-based CPU-FPGA software co-design

* Live-tracking (trigger in web Ul, output to .vcd) of FPGA signals (vendor agnostic)
e Zero-effort preferences page
* Interactive terminal (web Ul or command line)

* Single source of truth for CPU C++ library <- AXI Lite -> FPGA RTL decoder; command set
and bulk data transfers per FPGA sub-module

* Enforced CPU-FPGA version compatibility check

* Easy FPGA subsystem status probing (e.g. DDR memory read/write bandwidth) ... with
display in web Ul

Implementing and profiling collaborative CPU-FPGA projects 101

. . . FPGA Conference Europe 2025
with real-time requirements

The case for model-based CPU-FPGA software co-design

e Live-tracking (trigg
e Zero-effort prefere
* Interactive terminc

» Single source of trt
and bulk data tran:

e Enforced CPU-FPG.

e Easy FPGA subsyst
display in web Ul

System monitor

CPU temperature [°C] |65.653755

|
100.0
total: 0%
£ core 1: 0%
o
m
o
]
[« 8
Q
0.000 L e —_ — —
-60.00 =30.00 0.000

time [s]

HDR DDR read [MByte/s]
HDR DDR write [MByte/s]
render DDR read [MByte/s]
render DDR write [MByte/s]

Implementing and profiling collaborative CPU-FPGA projects

gnostic)

r; command set

width) ... with

FPGA Conference Europe 2025

with real-time requirements

The Whiznium Universe & Developer Lifestyle

Concept | Key features | Workflow | Starter kit

WhizniumDBE (“Device Builder’s Edition”) is
* NOT high-level synthesis (HLS), not a compiler
* NOT your typical generator framework

* NOT a visual design tool

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

The Whiznium Universe & Developer Lifestyle

Concept | Key features | Workflow | Starter kit

WhizniumDBE is
a user-extensible framework written in C++, that for a given RTL design
interprets its structure and features, specified in text-based model files
composes and maintains a fine-grained RTL model *) in a SQL database
then is able to write VHDL and C++ code based on it

taking into account manual code contributions of previous design versions

*) from hierarchical structure down to FSM’s incl. state transitions, CDC fabric,
generics/ports/signals/variables

Implementing and profiling collaborative CPU-FPGA projects FPGA Conference Europe 2025

with real-time requirements

The Whiznium Universe & Developer Lifestyle

Concept | Key features | Workflow | Starter kit

Clean, ergonomic, source code structure
(“tasteful naming conventions”, etc.)

Parametrized templates for standard components
(e.g. SPI, GPIO, CRC, Git-Ident; 35 and counting)

Custom templates can interact with the model /
module surroundings while a design is composed
(not just simple files with placeholders)

The applicable vendor(‘s primitives) can be an
auto-derived template parameter

Scope extends beyond the FPGA world with
WhizniumSBE (Service Builder’s Edition)

Implementing and profiling collaborative CPU-FPGA projects

native Linux / .NET / Mac

accessor apps 4. SCADA
HTML
DDS
. E AP lib ~~
ibrary =
EXTERNAL web-based Ul “#OPC UA
b OPC UA server
:[E]: web server DDS publisher
EMBEDDED XML preferences file
SYSTEM o
multi-threaded main executable SQ "“*//'7
WhizniumSBE MariaDB
domain A database

A

C

v
WhizniumDBE v

domain device access library
————————————————— m----m----
FPGA-based systems .
DEVICE uC-based systems VHDL and C state machines
LEVEL

with real-time requirements

FPGA Conference Europe 2025

The Whiznium Universe & Developer Lifestyle

Concept | Key features | Workflow | Starter kit

e Regular RTL workflow (including use of vendor IDE’s) augmented by “source code tree iteration”

v0.2.5 source

code tree
|-:Il"_‘l
|
= I}

/’ WhizniumDBE o

= 2
Ia a@ vocic? estc;g ’race

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

The Whiznium Universe & Developer Lifestyle

Concept | Key features | Workflow | Starter kit

* Whiznium onboarding vehicle but also teach [CPU+]FPGA best practices

* Re-launch (three platforms) with live demo at FPGA Horizons (London) in October

FPGA basics / topics covered FPGA-based vision / topics covered

v" clean modular project implementation v de-mosaic

v" vendor neutral where possible v pixel bit re-packaging

v' supervision by (Embedded) Linux v Decimation / averaging

v' FPGA-exclusive features: pipelined processing v HDR frame acquisition

v use of standard FPGA building blocks (DPRAM / ping- v classical feature detection (Harris corner detector,
pong buffers, DSP, 1/0) laser on-off trace)

v’ use of at least one advanced interface (MIPI, DDR, ...) v TBD: machine learning feature

v" >1clock domain and clock domain crossings

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow | Starter kit

AR AVEREIE 41T Titanium Ti180 dev kit (Efinix)

Zyng UltraScale+, Yocto on ARMv8 x2, 1GB DDR

Buildroot on soft RISC-V x4, 256 MB DDR

PolarFire SoC discovery kit
(Microchip)

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Conclusion & Qutlook

* Collaborative CPU-FPGA projects
* When partitioning, find good balance between CPU simplicity and FPGA performance
 Make no performance assumptions: profile behavior of actual application at runtime

 Leverage RT capabilities of FPGA to ease RT requirement of CPU

* Use model-based design provided by the OSS Whiznium tools
* Have single source of truth for CPU and FPGA portions of your projects
* Avoid vendor lock-in

* Benefit from JTAG-free live probing in web Ul

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Resources

Code for Example #3
https://github.com/mpsitech/wzsk-Whiznium-StarterKit
https://github.com/mpsitech/wskd-Whiznium-StarterKit-Device

* Both Whiznium tools are available free of charge on GitHub, including installation instructions
https://github.com/mpsitech/The-Whiznium-Documentation

* WhizniumSBE reference (NEW)
https://mpsitech.github.io/The-WhizniumSBE-Reference

* WhizniumDBE reference (NEW)
https://mpsitech.github.io/The-WhizniumDBE-Reference

* Some more presentations on the topic
https://www.mpsitech.com/documentation/presentations

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

https://github.com/mpsitech/wzsk-Whiznium-StarterKit
https://github.com/mpsitech/wzsk-Whiznium-StarterKit
https://github.com/mpsitech/wzsk-Whiznium-StarterKit
https://github.com/mpsitech/wzsk-Whiznium-StarterKit
https://github.com/mpsitech/wzsk-Whiznium-StarterKit
https://github.com/mpsitech/wskd-Whiznium-StarterKit-Device
https://github.com/mpsitech/wskd-Whiznium-StarterKit-Device
https://github.com/mpsitech/wskd-Whiznium-StarterKit-Device
https://github.com/mpsitech/wskd-Whiznium-StarterKit-Device
https://github.com/mpsitech/wskd-Whiznium-StarterKit-Device
https://github.com/mpsitech/wskd-Whiznium-StarterKit-Device
https://github.com/mpsitech/wskd-Whiznium-StarterKit-Device
https://github.com/mpsitech/The-Whiznium-Documentation
https://github.com/mpsitech/The-Whiznium-Documentation
https://github.com/mpsitech/The-Whiznium-Documentation
https://github.com/mpsitech/The-Whiznium-Documentation
https://github.com/mpsitech/The-Whiznium-Documentation
https://mpsitech.github.io/The-WhizniumSBE-Reference
https://mpsitech.github.io/The-WhizniumSBE-Reference
https://mpsitech.github.io/The-WhizniumSBE-Reference
https://mpsitech.github.io/The-WhizniumSBE-Reference
https://mpsitech.github.io/The-WhizniumSBE-Reference
https://mpsitech.github.io/The-WhizniumDBE-Reference
https://mpsitech.github.io/The-WhizniumDBE-Reference
https://mpsitech.github.io/The-WhizniumDBE-Reference
https://mpsitech.github.io/The-WhizniumDBE-Reference
https://mpsitech.github.io/The-WhizniumDBE-Reference
https://www.mpsitech.com/documentation/presentations

Thank You!

Questions?

Also, feel free to connect.

* https://www.linkedin.com/in/wirthmua

* https://github.com/mpsitech

Implementing and profiling collaborative CPU-FPGA projects

Alexander Wirthmiiller
Founder & Director

Phone: +49 (89) 4524 3826
Mobile: +49 (175) 918 5480
E-Mail: aw@mpsitech.com

MPSI Technologies GmbH
Agnes-Pockels-Bogen 1
80992 Munich

Germany
www.mpsitech.com

FPGA Conference Europe 2025

with real-time requirements

https://github.com/mpsitech
https://github.com/mpsitech
https://github.com/mpsitech
https://github.com/mpsitech

	Slide 1
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: CPU-FPGA Collaboration
	Slide 5: CPU-FPGA Collaboration
	Slide 6: Brief #1: Network packet scheduling
	Slide 7: Brief #1: Network packet scheduling
	Slide 8: Brief #2: Radar cube processing
	Slide 9: Brief #2: Radar cube processing
	Slide 10: Example #3: Vision-to-rotary table PI controller
	Slide 11: Example #3: Vision-to-rotary table PI controller
	Slide 12: Example #3: Vision-to-rotary table PI controller
	Slide 13: Example #3: Vision-to-rotary table PI controller
	Slide 14: Example #3: Vision-to-rotary table PI controller
	Slide 15: Example #3: Vision-to-rotary table PI controller
	Slide 16: Example #3: Vision-to-rotary table PI controller
	Slide 17: Example #3: Vision-to-rotary table PI controller
	Slide 18: Example #3: Vision-to-rotary table PI controller
	Slide 19: Key takeaways (1/2)
	Slide 20: Key takeaways (2/2)
	Slide 21: The case for model-based CPU-FPGA software co-design
	Slide 22: The case for model-based CPU-FPGA software co-design
	Slide 23: The case for model-based CPU-FPGA software co-design
	Slide 24: The case for model-based CPU-FPGA software co-design
	Slide 25: The case for model-based CPU-FPGA software co-design
	Slide 26: The case for model-based CPU-FPGA software co-design
	Slide 27: The case for model-based CPU-FPGA software co-design
	Slide 28: The case for model-based CPU-FPGA software co-design
	Slide 29: The Whiznium Universe & Developer Lifestyle
	Slide 30: The Whiznium Universe & Developer Lifestyle
	Slide 31: The Whiznium Universe & Developer Lifestyle
	Slide 32: The Whiznium Universe & Developer Lifestyle
	Slide 33: The Whiznium Universe & Developer Lifestyle
	Slide 34: The Whiznium Universe & Developer Lifestyle
	Slide 35: Conclusion & Outlook
	Slide 36: Resources
	Slide 37: Thank You!

