
Implementing and profiling
collaborative CPU-FPGA projects
with real-time requirements

Alexander Wirthmüller
aw@mpsitechnologies.com

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Introduction
About me

• Based in Munich

• Diploma in Electrical Engineering

• Founder and Director at MPSI Technologies

• MPSI Technologies: make Embedded Software development
more pleasant – by replacing repetitive tasks with
model-based source code generation

• Senior Staff Engineer with Symeo / indie Semiconductor
(industrial radar)

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Introduction
Scope

• CPU-based configuration (e.g. set FPGA IP core parameters once on start-up) &
monitoring (e.g. accumulate throughput statistics)

• Few updates per second / timing not critical

• FPGA subsystem performs functionality even when left alone by the CPU

→ Not the topic of this talk

• Here: focus on functionality which requires continuous CPU-FPGA interaction

• Sometimes with Realtime (RT) requirements

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

CPU-FPGA Collaboration
Why do it | How to do it

• Vast availability of specialized third-party libraries for CPU

• Significantly less effort for sequential C/C++ code as compared to RTL: coding,
debugging, maintenance

• On-system information availability / distribution: e.g. in industrial context by
default via Ethernet and CPU-side middleware

• FPGA’s are slow (typ. 200 MHz with tuned sections > 400 MHz)

• Few [sequential] algorithms are really suitable for high-level synthesis (HLS) or
should be tackled by HLS

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

CPU-FPGA Collaboration
Why do it | How to do it

• Two options in FPGA-SoC’s

• FPGA subsystem as memory-mapped peripheral CPU address space

• Shared section of DDR memory (with of without formal DMA functionality)

• By extension: standalone FPGA system as PCIe peripheral of CPU host

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Brief #1: Network packet scheduling
Application | Algorithm (simplified)

• FPGA accepts Ethernet frames, stores many frames in few-kB packets in DDR memory (1000+ slots)

• FPGA notifies CPU of stored packet (slot + ID)

• FPGA sends one packet (+ forward error correction) every 100 µs [hard realtime] via Gigabit
transceiver and optical fiber

• CPU should ideally make one “send” decision per 100 µs and communicate it to FPGA

• Without decision, FPGA re-sends previous packet

• Implementation: Linux host on MPSoC Cortex-A53 polling updates via AXI lite; DDR memory access
(reserved region) exclusive from FPGA

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Brief #1: Network packet scheduling
Application | Algorithm (simplified)

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Brief #2: Radar cube processing
Application | Algorithm (simplified)

• CPU assigns DDR memory slot to FPGA for the next frame

• FPGA accepts and time-stamps high-bandwidth multi-channel ADC data, does initial DSP, stores
result (1) in DDR memory [hard realtime]

• Two failure points: a. no slot assigned => frame is skipped; b. buffer overflow writing to DDR
memory => frame is skipped, CPU is notified

• FPGA continues to do DSP within assigned slot and processes result (1) into result (2)

• FPGA notifies CPU of completion, along with initially assigned time-stamp

• CPU post-processes result (2) with varying degree of time consumed

• Implementation: Linux host on MPSoC Cortex-A53 polling updates via AXI lite; shared DDR memory
section

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Brief #2: Radar cube processing
Application | Algorithm (simplified)

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Example #3: Vision-to-rotary table PI controller
Introduction | FPGA design | Feedback loop | Results

• Hardware: tabletop 3D laser scanner; ZUBoard (AMD MPSoC CG1), rotary table with stepper motor,
IMX335 5MP MIPI camera, [line lasers]

• Objective: closed loop control of stepper motor with detection of rotary angle using FPGA-based
computer vision

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Example #3: Vision-to-rotary table PI controller
Introduction | FPGA design | Feedback loop | Results

• CPU-based angle determination used to be OpenCV based, now is custom

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Example #3: Vision-to-rotary table PI controller
Introduction | FPGA design | Feedback loop | Results

• Sensor
Camif -> Videoin -> Corner -> Hostif

• Actuation
Hostif -> Rotary

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Example #3: Vision-to-rotary table PI controller
Introduction | FPGA design | Feedback loop | Results

• AXI lite/64 for Cortex-A53 CPU-triggered
status polling, corner coordinate buffer
read-out & actuator setpoint feedback

• Secondary AXI lite/32 co-host interface
towards Cortex-R5 present but not used

• AXI full/128 interface to access shared
DDR memory for other part of project
(HDR imaging)

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Example #3: Vision-to-rotary table PI controller
Introduction | FPGA design | Feedback loop | Results

• MIPI sensor delivers image frames at 30 fps, FPGA-based Harris corner detection algorithm (fully
pipelined) matches this pace with “zero latency”; no DDR memory is involved

• FPGA informs CPU of finalized coordinate buffer

• CPU locks coordinate buffer (inhibiting corner detection) and runs its portion of algorithm, then
unlocks

• In parallel, FPGA drives stepper motor and expects one variable update from CPU every 5 th frame
[hard realtime] (166 ms update interval; variable is angular velocity)

• If no input, FPGA throttles speed stepwise, down to zero

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Example #3: Vision-to-rotary table PI controller
Introduction | FPGA design | Feedback loop | Results

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Example #3: Vision-to-rotary table PI controller
Introduction | FPGA design | Feedback loop | Results

• Example going from -60°to +23.5°with 11 missed update intervals

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Example #3: Vision-to-rotary table PI controller
Introduction | FPGA design | Feedback loop | Results

• FPGA-triggered handshake req/ackCornerDone (to be acknowledged by CPU) takes random time
(here 27 µs) for ~10 AXIL io{read/write}64()’s from Linux … despite of 200 MHz PS -PL clock

• CPU-based processing and response reqRotarySet takes additional 14 µs

• Tuned version (minimizing io{read/write}64()’s) around 1-2 µs min. latency (on MPSoC!)

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Example #3: Vision-to-rotary table PI controller
Introduction | FPGA design | Feedback loop | Results

• Observation of non-deterministic DDR memory read/write operations via AXI full

• Write is relatively stable but read cycles are scattered => strictly observe / utilize full AXI capabilities
including posting many read addresses without waiting for first read data

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Key takeaways (1/2)

• The FPGA subsystem is a formidable real-time processor

• Clock-accurate repetition rate / control loop time constant

• Multiple parallel processes that don't interfere with one another

• Thus, the CPU subsystem can afford relaxed real-time constraints ...

• ... if the FPGA subsystem monitors glitches

• ... and has mitigation strategies in place

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Key takeaways (2/2)

• In preceding examples

• #1 re-send previous data packet in (real-timed) transmission slot missed by CPU

• #2a identify buffer overflows writing to DDR memory and void current ADC data’s frame

• #2b use multiple DDR memory slots so the CPU can lock one while the FPGA operates on others

• #3 implement “dead man’s switch” in PI controller if CPU is not responsive

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

The case for model-based CPU-FPGA software co-design

• Live-tracking (trigger in web UI, output to .vcd) of FPGA signals (vendor agnostic)

• Zero-effort preferences page

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

The case for model-based CPU-FPGA software co-design

• Live-tracking (trigger in web UI, output to .vcd) of FPGA signals (vendor agnostic)

• Zero-effort preferences page

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

The case for model-based CPU-FPGA software co-design

• Live-tracking (trigger in web UI, output to .vcd) of FPGA signals (vendor agnostic)

• Zero-effort preferences page

• Interactive terminal (web UI or command line)

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

The case for model-based CPU-FPGA software co-design

• Live-tracking (trigger in web UI, output to .vcd) of FPGA signals (vendor agnostic)

• Zero-effort preferences page

• Interactive terminal (web UI or command line)

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

The case for model-based CPU-FPGA software co-design

• Live-tracking (trigger in web UI, output to .vcd) of FPGA signals (vendor agnostic)

• Zero-effort preferences page

• Interactive terminal (web UI or command line)

• Single source of truth for CPU C++ library <- AXI Lite -> FPGA RTL decoder; command set
and bulk data transfers per FPGA sub-module

• Enforced CPU-FPGA version compatibility check

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

The case for model-based CPU-FPGA software co-design

• Live-tracking (trigger in web UI, output to .vcd) of FPGA signals (vendor agnostic)

• Zero-effort preferences page

• Interactive terminal (web UI or command line)

• Single source of truth for CPU C++ library <- AXI Lite -> FPGA RTL decoder; command set
and bulk data transfers per FPGA sub-module

• Enforced CPU-FPGA version compatibility check

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

The case for model-based CPU-FPGA software co-design

• Live-tracking (trigger in web UI, output to .vcd) of FPGA signals (vendor agnostic)

• Zero-effort preferences page

• Interactive terminal (web UI or command line)

• Single source of truth for CPU C++ library <- AXI Lite -> FPGA RTL decoder; command set
and bulk data transfers per FPGA sub-module

• Enforced CPU-FPGA version compatibility check

• Easy FPGA subsystem status probing (e.g. DDR memory read/write bandwidth) … with
display in web UI

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

The case for model-based CPU-FPGA software co-design

• Live-tracking (trigger in web UI, output to .vcd) of FPGA signals (vendor agnostic)

• Zero-effort preferences page

• Interactive terminal (web UI or command line)

• Single source of truth for CPU C++ library <- AXI Lite -> FPGA RTL decoder; command set
and bulk data transfers per FPGA sub-module

• Enforced CPU-FPGA version compatibility check

• Easy FPGA subsystem status probing (e.g. DDR memory read/write bandwidth) … with
display in web UI

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

WhizniumDBE (“Device Builder’s Edition”) is

• NOT high-level synthesis (HLS), not a compiler

• NOT your typical generator framework

• NOT a visual design tool

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow | Starter kit

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

WhizniumDBE (“Device Builder’s Edition”) is

• NOT high-level synthesis (HLS), not a compiler

• NOT your typical generator framework

• NOT a visual design tool

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow | Starter kit

WhizniumDBE is

… a user-extensible framework written in C++, that for a given RTL design

… interprets its structure and features, specified in text-based model files

… composes and maintains a fine-grained RTL model *) in a SQL database

… then is able to write VHDL and C++ code based on it

… taking into account manual code contributions of previous design versions

*) from hierarchical structure down to FSM’s incl. state transitions, CDC fabric,
generics/ports/signals/variables

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

• Clean, ergonomic, source code structure
(“tasteful naming conventions”, etc.)

• Parametrized templates for standard components
(e.g. SPI, GPIO, CRC, Git-Ident; 35 and counting)

• Custom templates can interact with the model /
module surroundings while a design is composed
(not just simple files with placeholders)

• The applicable vendor(‘s primitives) can be an
auto-derived template parameter

• Scope extends beyond the FPGA world with
WhizniumSBE (Service Builder’s Edition)

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow | Starter kit

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

• Regular RTL workflow (including use of vendor IDE’s) augmented by “source code tree iteration”

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow | Starter kit

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

• Whiznium onboarding vehicle but also teach [CPU+]FPGA best practices

• Re-launch (three platforms) with live demo at FPGA Horizons (London) in October

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow | Starter kit RE-LAUNCH

FPGA basics / topics covered

✓ clean modular project implementation
✓ vendor neutral where possible
✓ supervision by (Embedded) Linux
✓ FPGA-exclusive features: pipelined processing
✓ use of standard FPGA building blocks (DPRAM / ping-

pong buffers, DSP, I/O)
✓ use of at least one advanced interface (MIPI, DDR, ...)
✓ >1 clock domain and clock domain crossings

FPGA-based vision / topics covered

✓ de-mosaic
✓ pixel bit re-packaging
✓ Decimation / averaging
✓ HDR frame acquisition
✓ classical feature detection (Harris corner detector,

laser on-off trace)
✓ TBD: machine learning feature

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

The Whiznium Universe & Developer Lifestyle
Concept | Key features | Workflow | Starter kit RE-LAUNCH

Avnet ZUBoard (AMD)

Zynq UltraScale+, Yocto on ARMv8 x2, 1GB DDR
Titanium Ti180 dev kit (Efinix)

Buildroot on soft RISC-V x4, 256MB DDR

PolarFire SoC discovery kit
(Microchip)

Yocto on RISC-V x4, 1GB DDR

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Conclusion & Outlook

• Collaborative CPU-FPGA projects

• When partitioning, find good balance between CPU simplicity and FPGA performance

• Make no performance assumptions: profile behavior of actual application at runtime

• Leverage RT capabilities of FPGA to ease RT requirement of CPU

• Use model-based design provided by the OSS Whiznium tools

• Have single source of truth for CPU and FPGA portions of your projects

• Avoid vendor lock-in

• Benefit from JTAG-free live probing in web UI

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Resources

• Code for Example #3
https://github.com/mpsitech/wzsk-Whiznium-StarterKit
https://github.com/mpsitech/wskd-Whiznium-StarterKit-Device

• Both Whiznium tools are available free of charge on GitHub, including installation instructions
https://github.com/mpsitech/The-Whiznium-Documentation

• WhizniumSBE reference (NEW)
https://mpsitech.github.io/The-WhizniumSBE-Reference

• WhizniumDBE reference (NEW)
https://mpsitech.github.io/The-WhizniumDBE-Reference

• Some more presentations on the topic
https://www.mpsitech.com/documentation/presentations

https://github.com/mpsitech/wzsk-Whiznium-StarterKit
https://github.com/mpsitech/wzsk-Whiznium-StarterKit
https://github.com/mpsitech/wzsk-Whiznium-StarterKit
https://github.com/mpsitech/wzsk-Whiznium-StarterKit
https://github.com/mpsitech/wzsk-Whiznium-StarterKit
https://github.com/mpsitech/wskd-Whiznium-StarterKit-Device
https://github.com/mpsitech/wskd-Whiznium-StarterKit-Device
https://github.com/mpsitech/wskd-Whiznium-StarterKit-Device
https://github.com/mpsitech/wskd-Whiznium-StarterKit-Device
https://github.com/mpsitech/wskd-Whiznium-StarterKit-Device
https://github.com/mpsitech/wskd-Whiznium-StarterKit-Device
https://github.com/mpsitech/wskd-Whiznium-StarterKit-Device
https://github.com/mpsitech/The-Whiznium-Documentation
https://github.com/mpsitech/The-Whiznium-Documentation
https://github.com/mpsitech/The-Whiznium-Documentation
https://github.com/mpsitech/The-Whiznium-Documentation
https://github.com/mpsitech/The-Whiznium-Documentation
https://mpsitech.github.io/The-WhizniumSBE-Reference
https://mpsitech.github.io/The-WhizniumSBE-Reference
https://mpsitech.github.io/The-WhizniumSBE-Reference
https://mpsitech.github.io/The-WhizniumSBE-Reference
https://mpsitech.github.io/The-WhizniumSBE-Reference
https://mpsitech.github.io/The-WhizniumDBE-Reference
https://mpsitech.github.io/The-WhizniumDBE-Reference
https://mpsitech.github.io/The-WhizniumDBE-Reference
https://mpsitech.github.io/The-WhizniumDBE-Reference
https://mpsitech.github.io/The-WhizniumDBE-Reference
https://www.mpsitech.com/documentation/presentations

Implementing and profiling collaborative CPU-FPGA projects
with real-time requirements

FPGA Conference Europe 2025

Thank You!
Questions?

Also, feel free to connect.

• https://www.linkedin.com/in/wirthmua

• https://github.com/mpsitech

https://github.com/mpsitech
https://github.com/mpsitech
https://github.com/mpsitech
https://github.com/mpsitech

	Slide 1
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: CPU-FPGA Collaboration
	Slide 5: CPU-FPGA Collaboration
	Slide 6: Brief #1: Network packet scheduling
	Slide 7: Brief #1: Network packet scheduling
	Slide 8: Brief #2: Radar cube processing
	Slide 9: Brief #2: Radar cube processing
	Slide 10: Example #3: Vision-to-rotary table PI controller
	Slide 11: Example #3: Vision-to-rotary table PI controller
	Slide 12: Example #3: Vision-to-rotary table PI controller
	Slide 13: Example #3: Vision-to-rotary table PI controller
	Slide 14: Example #3: Vision-to-rotary table PI controller
	Slide 15: Example #3: Vision-to-rotary table PI controller
	Slide 16: Example #3: Vision-to-rotary table PI controller
	Slide 17: Example #3: Vision-to-rotary table PI controller
	Slide 18: Example #3: Vision-to-rotary table PI controller
	Slide 19: Key takeaways (1/2)
	Slide 20: Key takeaways (2/2)
	Slide 21: The case for model-based CPU-FPGA software co-design
	Slide 22: The case for model-based CPU-FPGA software co-design
	Slide 23: The case for model-based CPU-FPGA software co-design
	Slide 24: The case for model-based CPU-FPGA software co-design
	Slide 25: The case for model-based CPU-FPGA software co-design
	Slide 26: The case for model-based CPU-FPGA software co-design
	Slide 27: The case for model-based CPU-FPGA software co-design
	Slide 28: The case for model-based CPU-FPGA software co-design
	Slide 29: The Whiznium Universe & Developer Lifestyle
	Slide 30: The Whiznium Universe & Developer Lifestyle
	Slide 31: The Whiznium Universe & Developer Lifestyle
	Slide 32: The Whiznium Universe & Developer Lifestyle
	Slide 33: The Whiznium Universe & Developer Lifestyle
	Slide 34: The Whiznium Universe & Developer Lifestyle
	Slide 35: Conclusion & Outlook
	Slide 36: Resources
	Slide 37: Thank You!

